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Abstract
The prosperity of AI and edge computing has pushed more

and more well-trained DNN models to be deployed on third-
party edge devices to compose mission-critical applications.
This necessitates protecting model confidentiality at untrusted
devices, and using a co-located accelerator (e.g., GPU) to
speed up model inference locally. Recently, the community
has sought to improve the security with CPU trusted execu-
tion environments (TEE). However, existing solutions either
run an entire model in TEE, suffering from extremely high
inference latency, or take a partition-based approach to hand-
craft partial model via parameter obfuscation techniques to
run on an untrusted GPU, achieving lower inference latency at
the expense of both the integrity of partitioned computations
outside TEE and accuracy of obfuscated parameters.

We propose SOTER, the first system that can achieve model
confidentiality, integrity, low inference latency and high ac-
curacy in the partition-based approach. Our key observation
is that there is often an associativity property among many
inference operators in DNN models. Therefore, SOTER auto-
matically transforms a major fraction of associative operators
into parameter-morphed, thus confidentiality-preserved op-
erators to execute on untrusted GPU, and fully restores the
execution results to accurate results with associativity in TEE.
Based on these steps, SOTER further designs an oblivious
fingerprinting technique to safely detect integrity breaches of
morphed operators outside TEE to ensure correct executions
of inferences. Experimental results on six prevalent models
in the three most popular categories show that, even with
stronger model protection, SOTER achieves comparable per-
formance with partition-based baselines while retaining the
same high accuracy as insecure inference.

1 Introduction
Driven by the remarkable success of AI [25] and edge com-
puting [11,17], giant companies are increasingly shifting their
well-trained Deep Neural Network (DNN) models from the
cloud to enormous edge devices, to compose mission-critical
applications such as autopilot navigation [8, 15], home mon-
itoring [20] and visual assistance [49]. By employing accel-
erators (e.g., GPU), clients of edge devices can conduct low-
latency inferences without connecting with a remote server
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with high latency and network instability, and clients do not
have to transfer their sensitive data to the cloud.

Since obtaining accurate models requires model providers
to pay substantial resources to train parameters with private
datasets [10, 45], in order to preserve their competitive advan-
tages, model providers usually require their offloaded models
to keep black-box (confidential) with traditional semantic se-
curity guarantee [7]: a client can query the local model for
results, but will learn nothing about the parameters’ plaintexts.

To preserve model confidentiality, a pragmatic approach is
to use the publicly available Trusted Execution Environments
(TEE), in particular Intel SGX [14], a pervasively used CPU
TEE product. SGX provides both code integrity and data con-
fidentiality for enclaves [5,33], and avoids severe performance
downgrading caused by using traditional cryptographic tools
(e.g., Homomorphic Encryption [36,44]), making it attractive
for model providers to protect their offloaded models while
retaining high inference service quality.

Much prior work has explored using SGX for secure model
inference, and these approaches can be summarized into two
categories. First, the TEE-shielding approach, which runs the
entire unmodified model in enclaves, achieves both model
confidentiality and high accuracy same as the original model,
but suffers from extremely high latency due to the limited
computing resources on CPU’s enclave and the lack of pub-
licly available secure GPU devices [3, 65]. As a typical TEE-
shielding work, MLcapsule [27] incurs dramatically higher
latency (up to 36.1X) than insecure GPU inference for diverse
workloads (§6.1).

In order to mitigate the high latency issue, the second cate-
gory of work, including eNNclave [56] and AegisDNN [68],
takes a partition-based approach to manually select a portion
of sensitive model layers to run in an enclave, and partition
the rest of the layers to run on an untrusted GPU for accelera-
tion, achieving lower inference latency than TEE-shielding
approaches by utilizing the strong GPU computing power.

Unfortunately, existing partition-based approaches face a
fundamental confidentiality-accuracy dilemma: some of the
approaches replace the partitioned layers’ parameters with
public parameters from other models composed by the same
layers, which effectively protects model confidentiality but
trades off the accuracy. This is because the original parame-
ters are usually trained by model provider’s private datasets
tailored for a specific task [10, 45]; hence the parameters are



exclusive to achieve the original high accuracy. In contrast,
some partition-based approaches preserve the original high
accuracy by holding plaintexts of partitioned operators’ pa-
rameters on an untrusted GPU, which partially compromises
the confidentiality by revealing a fraction of parameters’ plain-
texts to the adversary outside an enclave.

Our key observation to resolve this dilemma is the asso-
ciativity property of many inference operators. Associativity
means that the way that factors are grouped in an operator’s
computation does not change the final result [43]. With asso-
ciativity, we can securely transform an associative operator
into parameter-morphed, thus confidentiality-preserved op-
erator by scaling its parameters with a hidden scalar in an
enclave, run that morphed operator on the GPU and fully
restore the execution result of that operator with the scalar
hidden in an enclave. Since associative operators (e.g., Convo-
lution, Fully-connected) widely exist in general DNN models,
and these operators represent a major fraction of computa-
tion in a DNN model (e.g., 93.5% of the computation on
VGG19 [61] is spent on convolution), we can achieve dra-
matically increased performance by partitioning morphed,
computationally expensive operators to run on a GPU.

Based on this observation, we present SOTER1, the first
partition-based approach that achieves model confidentiality,
low latency and high accuracy simultaneously. SOTER car-
ries a Morph Then Restore (MTR) protocol for cooperative
executions between kernels (enclave and GPU). Specifically,
SOTER randomly selects a major fraction of associative op-
erators, morphs their parameters with randomly generated
blinding coins (scalars) in the enclave, and partitions these
parameter-morphed operators to run on a GPU. For each
client’s input, SOTER executes each operator (either in an
enclave or GPU) in order, transfers intermediate execution
results (IR) across kernels when needed, and restores the final
execution result with reciprocal coins in the enclave. A subtle
case is that, under special partition cases, an adversary who
observes IRs transmitted across kernels can reveal the value of
coins hidden in an enclave (§4.1). Hence, SOTER additionally
morphs the value of IRs before they are transmitted across
kernels to hide the blinding coins, thus protecting the model
confidentiality.

However, even with these steps, SOTER still faces an in-
herent integrity hazard in the presence of an adversary at the
edge side, who can observe and manipulate any components
(e.g., morphed parameters on GPU) outside the enclave to
mislead the offloaded model to produce wrong output, ruining
the model provider’s inference service quality.

To tackle the integrity hazard, SOTER’s MTR protocol gen-
erates oblivious fingerprints at runtime to detect integrity
breaches outside the enclave in a challenge-proof man-
ner [71]. Our key idea is that the associativity property can
be used to efficiently generate integrity challenges at run-

1SOTER is an ancient Greek god, guards safety against cosmic chaos.

System
Model GPU High Inference General

Confidentiality Acceleration Accuracy Integrity Functionality

∗MLcapsule [27] √
×

√ √ √

∗ Privado [26] √
×

√ √ √

∗Occlumency [41] √
×

√ √ √

• Serdab [21] ×
√ √

× ×
•Darknight [28] ×

√
×

√ √

• eNNclave [56] √ √
× × ×

•AegisDNN [68] ×
√ √

×
√

• SOTER
√ √ √ √ √

Table 1: Comparison of SOTER and related systems. "∗ / •"
means that the system uses either a TEE-shielding approach
(∗), or a partition-based approach (•).

time. Specifically, before running inferences, SOTER collects
fingerprints of partitioned operators in enclave, which hold
the ground-truth of these operators’ execution results; during
the inference, SOTER challenges partitioned operators with
fingerprint input to ask them for execution proofs. By com-
paring the returned proofs with expected fingerprint output in
enclave, SOTER learns whether integrity breaches occur.

To prevent an adversary from distinguishing fixed finger-
print challenges thus bypassing the detection, inspired by
traditional steganography techniques [34, 52], SOTER dynam-
ically derives new fingerprints by using existing fingerprints
in enclave based on the associativity property. The new fin-
gerprints statistically share the same distribution as client’s
normal input (§4.2), making fingerprints oblivious to the at-
tacker. Therefore, by leveraging the same key observation of
associativity, SOTER achieves both model confidentiality and
integrity in a unified manner.

We implemented SOTER with Graphene-SGX [63], a ma-
ture framework that supports developing neural network appli-
cations with Intel SGX. We evaluated SOTER with six popular
DNN models covering three popular categories, including
Multi-layer Perception (MLP) [40], Convolution Neural Net-
work (CNN) [24] and Transformer [64]. We compared SOTER
to three notable TEE-based secure inference systems, cov-
ering both the TEE-shielding approach and partition-based
approach. Our evaluation shows that:

• SOTER is secure. For confidentiality, SOTER effectively
hid parameters’ plaintexts, and achieved comparable model
protection as TEE-shielding baseline under powerful model
stealing attacks (§6.3); for integrity, SOTER detected any in-
tegrity breaches within ten fingerprint challenges with an
overwhelmingly high probability of 99.9% (§6.4).
• SOTER is efficient. SOTER achieved up to 72.6% lower
latency than the TEE-shielding baseline, and had moderate
latency (up to 1.2X) compared to partition-based baselines,
while the baselines do not have integrity protections (§6.1).
• SOTER is accurate. SOTER retained the same high accuracy
as insecure inference, while the most efficient partition-based
baseline caused 1.1%∼5.5% accuracy drops.

Our major contribution is the MTR protocol, the first work
that achieves model confidentiality, low latency and high ac-



curacy with integrity protection for secure model inference.
Compared to existing relevant baselines, SOTER achieved
comparable strong confidentiality as the TEE-shielding ap-
proach, comparable low-latency as the partition-based ap-
proach, high accuracy same as insecure inference, and over-
whelming high probability of detecting integrity breaches
outside an enclave. This makes SOTER unique to greatly
promote the prosperity of AI on edge devices, encouraging
enormous model providers to develop powerful models and
deploy them on third-party edge devices. Also, our MTR
protocol can generally protect model inference on the cloud
when the model provider does not trust the owner of cloud
servers that host the model. SOTER’s source code is released
on github.com/hku-systems/SOTER.

In the rest of this paper: §2 introduces background; §3
gives an overview of SOTER; §4 describes SOTER’s design;
§5 covers SOTER’s implementation; §6 shows our evaluation;
§7 discusses related work and §8 concludes.

2 Background
2.1 Deep Neural Network
A DNN model (in short, model) can be represented as a se-
quence of connected layers with each layer assigned a set of
operators, as shown in Figure 1. An operator is either a linear
operator or a nonlinear operator where a linear operator is
weighted by parameter matrices (in short, parameters).
Inference workflow. Figure 1 shows the inference workflow.
A model M passes an input X (e.g., an image) through layers
of operators to compute logits [30], normalizes logits with
softmax function to produce a probability vector, and assigns
a class with the highest probability to input X as the class
label. Without losing generality, we use image classification
as an example to illustrate model composition in the following
discussions.
Associativity of DNN operators. Operators are the basic
building blocks of a DNN model, among which linear opera-
tors have been proven to take up the majority of computation
resources in general model inferences [1, 70].

Many DNN models deployed at the edge are built on top
of associative operators. Suppose we have an input X and a
scalar µ, a DNN operator F is associative if

(µ−1 ∗µ) ·F(X) = µ−1 ·F(µ∗X) (1)

Linear operators, including computationally expensive con-
volution and fully-connected, have the associativity property
as they conduct linear transformation on input data. For in-
stance, take the convolution operator as an example: as shown
in Figure 1, if we multiply each element in the convolution
kernel by 2−1 (i.e., µ = 2−1), we will get the output 2−1R,
while it always holds (2∗2−1)∗R = 2∗ (2−1R) in Equation 1.
This property applies to other linear operators as well.

For nonlinear operators that conduct nonlinear transforma-
tion on data, most of them do not have an associativity prop-
erty (e.g., Sigmoid). However, interestingly, under specific
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Figure 1: An overview of the DNN model.

constraints, some nonlinear operators can also be associative.
Take the most commonly used ReLU as an example: the ReLU
function, F(x) = Max{0,X}, is scale-invariant when µ > 0,
i.e., F(µx) = Max{0,µX}= µF(X). Hence, given a scalar µ,
Equation 1 applies to ReLU. Similar to ReLU, the pooling
function is associative as well.

Operators that satisfy Equation 1 also meet a variant of the
associativity property. Given that

F(X1) = y1,F(X2) = y2, ...,F(Xn) = yn

it always holds

F(
n

∑
i=1

µi ∗Xi) =
n

∑
i=1

µi ∗ yi (2)

SOTER leverages Equation (1) as the key weapon to pro-
duce parameter-morphed, thus confidentiality-preserved op-
erators to run on GPU for acceleration, and restore accurate
results in enclave. SOTER uses Equation (2) to efficiently gen-
erate oblivious fingerprints for integrity checking at runtime.
We illustrate our detailed designs in §4.

2.2 Intel SGX and Related Work
Intel Software Guard eXtension (SGX) [14] is a pervasively
used hardware feature on commodity CPUs. SGX provides a
secure execution environment called enclave, where data and
code execution cannot be seen or tampered with from outside.

As shown in Table 1, there are two categories of SGX-based
work that provides secure inference service. The first category
is the TEE-shielding approach that runs all inference compu-
tations within enclave (e.g., MLcapsule [27], Privado [26],
Occlumency [41]). Such an approach shields the entire model
in enclave to hide parameters’ plaintexts, but fails to achieve
low inference latency owing to the computational bottleneck
of CPU and the lack of publicly available trusted GPU [3,65].

The second category is the partition-based approach that
runs a portion of model layers in enclave and runs the rest of
the layers on a GPU for acceleration. AegisDNN [68] only
shields partial critical model layers in enclave and accelerates
other plaintext layers on GPU. To decide which layers should

github.com/hku-systems/SOTER


be partitioned, AegisDNN takes a user-specified argument
(i.e., deadline for an inference task), uses silent data corrup-
tion mechanism [23] to learn each layer’s criticality, and parti-
tions uncritical (plaintext) layers to GPU to meet the stringent
deadline. eNNclave [56] argues that the feature extraction
operators (e.g., convolution) of different models are generally
transferable, hence it replaces partitioned operators’ parame-
ters with pre-trained parameters of other models, which sac-
rifices inference accuracy. This is because, model providers
usually train their models with private datasets tailored for
a specific task, thus each parameter in the trained model is
exclusive to achieve high accuracy [10, 45, 72]. Also, such
an approach is only applicable to specific models where pub-
lic parameters are available. Serdab [21] and Darknight [28]
assume the model is deployed on a trusted cloud. Instead of
protecting model confidentiality, they have an orthogonal goal
of protecting users’ data privacy on the cloud.

3 Overview
3.1 System setup
We consider a client-side inference scenario shown in Fig-
ure 2. Different from a cloud-side inference scenario (e.g.,
Delphi [44], Gazelle [36]) where the model is hosted on the
trusted cloud server, we consider the model provider offloads
its model to the client’s untrusted edge device to run model
inferences. The device constantly takes sensitive queries from
the client and sends inference results back to the client.

3.2 Security model
We consider an honest model provider that provides the cor-
rect model requested by the client, and the model is offloaded
to run on an SGX-equipped third-party edge device. We trust
the hardware and firmware of Intel SGX, which ensure that
code and data in enclave can not be seen or tampered with
from outside. However, any components outside the enclave
are untrusted.

We consider a malicious edge-side attacker outside the
enclave that aims to (1) steal the parameters of the offloaded
model, and (2) perturb any components outside the SGX to
modify the inference results. An edge-side attacker could
be a business competitor who wants to steal the model for
competitive advantages and ruin the inference service to screw
up the model provider’s reputation [12, 13, 54]. Even worse,
the integrity attack against edge-side model inference could
pose severe threats to edge users. For instance, an attacker
may hack into a self-driving system running with an obstacle
detection model, and perturb the model parameters to produce
incorrect navigation instructions to the car [9].
Semantic security. Similar to prior secure inference systems,
namely the MLcapsule [27] and eNNclave [56], SOTER aims
to achieve model confidentiality with the semantic security
guarantee: knowing only ciphertexts, it must be infeasible
for a computationally-bounded adversary to derive signifi-
cant information about the plaintexts [7]. In the secure infer-
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Figure 2: The client-side inference scenario.

ence scenario, it captures the requirement that the parameters’
plaintexts cannot be derived from any data observed by the
adversary.

Note that, we do not hide information that is revealed by
the results of inference queries, and we focus just on pro-
tecting the parameters’ plaintexts. Protecting against attacks
that exploit the leakage of inference results is a complemen-
tary problem to that solved by SOTER. We give a detailed
illustration of these attacks and potential mitigations in §7.

3.3 System overview
SOTER’s two-phase design. SOTER’s protocol consists of an
offline preprocessing phase, and an online inference phase.
Specifically, the preprocessing phase is independent of the
client’s query input which changes regularly. We assume the
offloaded model from the server is static, if the model changes,
then both parties should re-run SOTER’s preprocessing phase.
After preprocessing, during the inference phase, the client
sends query input to get the eventual result. Note that, SOTER
is best suited for applications whose inference is latency-
sensitive, but is usually not performed frequently enough to
take up all computational resources needed for preprocessing.
SOTER’s workflow. In Figure 3, we show how SOTER lever-
ages the general associativity property of DNN operators to
automatically partition a DNN model.

In the preprocessing phase: during P1∼P3, a SOTER client
conducts standard SGX attestation to the server for obtaining
the model M and decryption keys KEYM , and then loads the
encrypted model M in a layer-wise manner by decrypting
with KEYM locally. In P4 and P5, SOTER extracts the model
architecture, statically filters out all associative operators that
meet Equation 1, and then invokes SOTER’s MTR protocol
for model partitioning.

Specifically, in P5, SOTER’s MTR protocol runs as follows:
With a given partition ratio θ, SOTER randomly selects θ%
associative operators, and generates (1) fingerprints of the se-
lected operators for integrity checking (used in the inference
phase), and (2) random scalars for all operators. These scalars
serve as the blinding coins to hide the parameters [44] and are
always kept secret in enclave. With the associativity property
(Equation 1), SOTER morphs every selected associative oper-
ator by multiplying each element in the operator’s parameter
matrices with a blinding coin (the computation result can
be restored by using the reciprocal coin), and then partitions
the selected operators with morphed parameters to GPU. In
Figure 3, the selected operators (in green) are morphed with
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corresponding coins, e.g., the parameters of the third operator
OP3 are morphed with its coin µ3 and partitioned to GPU,
while the second operator (in blue) is kept within an enclave.

Note that, we choose to run the preprocessing procedures
(P1∼P5) at the client-side because client C might select his θ

according to his GPU capability, e.g., choose a smaller θ if
the GPU has limited usable memory.

In the inference phase, there are two types of data flows:
the inference flow (black dotted line) and the fingerprint data
flow (green dotted line). The life-cycle for the inference data
flow is: (I1) The client C sends a query input (i.e., data for
inference) to the trusted inference manager module and shuf-
fles with the fingerprint input (introduced below). (I2) The
inference manager forwards C’s input X1 to the GPU, and the
first morphed operator OP1 takes X1 as input and computes
the output m1. (I3) Since the next operator OP2 is expected to
run within enclave according to the plan made in the prepro-
cessing phase, the inference manager takes the computation
result of previous partitioned operators (i.e., m1) as the input,
restores m1 with all previous partitioned operators’ blinding
coins since the last kernel switch (in Figure 3’s circumstance,
SOTER restores with only OP1’s blinding coin µ1), and gets
the restored result M1. (I4) After that, the second operator
OP2 computes with M1 and gets an intermediate result (IR),
then morphs IR with the OP2’s blinding coin µ2 and forwards
the result m2 to the partitioned operator OP3 in GPU.

The above procedures (I2∼I4) repeat until all partitioned
operators in GPU are computed. In (Ix), with the last compu-
tation result mx from OPx, SOTER restores the real result with
all partitioned operators’ coins since the last kernel switch
(same as I3). In this case, SOTER restores with µ2 ∼ µx and
gets the real inference result Mx. Last, SOTER runs a standard
normalization to get the class label for client C.

The fingerprint data flow is used to detect integrity breaches
of partitioned operators outside an enclave. Specifically, with
a set of fingerprints produced in the preprocessing phase (P5),
SOTER dynamically derives new fingerprints by utilizing the
general associativity of Equation 2, injects these fingerprints
into the inference data flow to check whether the partitioned
parameters have been maliciously modified by an adversary
outside the enclave.
SOTER’s generality. SOTER supports general neural net-
works. SOTER’s key insight into partitioning neural networks
lies in the broad associativity of common inference opera-
tors (§2.1), including all linear operators (e.g., convolution
and fully-connected) and typical nonlinear operators (e.g.,
ReLU, Max-pool, and Mean-pool). Hence, SOTER theoreti-
cally supports all neural networks (including recurrent neu-
ral networks [69]), but exhibits varying performance gains
(compared with running the entire neural network in TEE)
depending on the ratio of associative operators in neural net-
works (§6.1). SOTER also supports general TEEs (e.g., ARM
TrustZone [53] and AMD SEV [58]) as long as the TEE pro-
vides data confidentiality and code integrity guarantees that
SOTER’s MTR protocol requires.

4 Protocol Description

This section describes SOTER’s MTR protocol. At a high
level, MTR utilizes the general associativity property of DNN
operators to automatically profile a model (with Equation 1),
randomly selects a portion of associative operators, and then
morphs these operators’ parameters with hidden blinding
coins in enclave to hide parameters’ plaintexts (§4.1). Besides,
to tackle the integrity threat (described in §3.2), stemming
from the same observation of the general associativity prop-
erty, MTR dynamically derives oblivious fingerprints (with



Table 2: SOTER’s protocol variables.

Variable Description

Θ(de f ault = 0.8) Portion of associative operators partitioned to GPU.
Og | Oe Partitioned operators in GPU / maintained in TEE.
O(Og∪Oe) The whole set of model M’s operators.
Para(Oi) Parameters of operator Oi.
FPOi Fingerprint of operator Oi.
µi Blinding coin of operator Oi.

Equation 2) and uses fingerprints to check the integrity of par-
titioned operators in a challenge-proof manner (§4.2). Table 2
shows the variables used in the MTR protocol.

4.1 Morph Then Restore (MTR) protocol
The MTR protocol is divided into two stages: a morphing
stage and a restore stage. In the morphing stage, SOTER first
makes blinding coins for every operator (including both as-
sociative and non-associative operators), and then makes a
partition plan with a given partition ratio θ. Then, in the re-
store stage, SOTER runs inference across GPU and enclave,
and restores inference results in enclave when needed. Algo-
rithm 1 and 2 show the MTR protocol.
Stage 1-1: Morphing with blinding coins. SOTER assigns
every operator with a randomly generated scalar, which serves
as the blinding coin to hide the plaintext value of parameters.
Given an operator Oi (the partition plan is described in Stage
1-2), SOTER morphs Para(Oi) by multiplying each element
in Para(Oi) with the corresponding coin µi. Note that, SOTER
requires periodically updating of the coins to avoid potential
chosen plaintext attacks [6,37], as the morphing is completely
linear. According to the hill cipher theory [48], each coin can
tolerate up to n2 attacks (i.e., n2 inferences) where n is the
parameter matrix’s size of the operator that the coin applies to.
Hence, SOTER updates a morphed operator with matrix size
n every n2 inferences. Notably, this updating can be done off
the critical path when the inference tasks are not busy (§5).

• Protect coins during kernel switches. One subtle case is
that, SOTER assigns random coins to every operator (rather
than selected operators for partitioning) to avoid potential
information leakage during kernel switches, i.e., when inter-
mediate results (IRs) are transmitted between the enclave and
GPU. We illustrate our design by giving a running example.
• Running example. We demonstrate our idea with the ex-
ample in Figure 4, which is a common architecture in typical
DNN models. SOTER selects a portion of model operators to
run in the TEE enclave (green portion), and partitions the re-
maining operators to run on the untrusted GPU (red portion).
An adversary outside the enclave is attempting to deduce the
blinding coins used to morph the GPU operators according to
the attacker-visible IRs (Y1 and Y2).

We begin with the Before case, in which only the parti-
tioned GPU operators are protected by SOTER’s blinding
coins. OP1 (on the GPU) is a linear operator and OP2 (in

Algorithm 1: MTR protocol at client c (offline) (§4.1).
O Preprocessing Phase (within enclave).

1 Function partition(O) do
2 foreach operator op in O do
3 op.partition← False; op.index← O.index(op);
4 if op.index >W then
5 if 0 < normalize(sgx_read_rand())< Θ then
6 op.partition← True;
7 if op is associative & op.partition then
8 foreach element e in para(op) do
9 e← µindex× e ; // Morph

10 Og.add(op) ; // GPU operators

11 else
12 Oe.add(op) ; // TEE operators

13 Og.copyTo (“cuda") ; // Partition to GPU

enclave) is a non-linear ReLU operator. If we only morph
OP1 with µ1 and do not assign a coin to OP2, then, with a
client input X , OP1 outputs y1 = X(µ1 ∗OP1) and OP2 out-
puts y2 = ReLU(y1/µ1) = ReLU(X ∗OP1). However, since
the ReLU operator only filters out negative values in parame-
ter matrices and does not transform a scalar, an adversary who
observes both y1 and y2 will directly infer the value of coin
µ1, violating the confidentiality of the partitioned OP1 (con-
cretely, Para(Oi)). To tackle this problem, we assign coins
to all operators rather than partitioned GPU operators only.
As demonstrated in the After case of Figure 4, by assigning
coin µ2 to OP2, OP2 will output y2 = µ2 ∗ReLU(X ∗OP1). An
adversary observes µ1 ∗µ2 but has no way of inferring either
µ1 or µ2.

Overall, by morphing both the enclave and the partitioned
GPU operators with blinding coins stored in TEE enclave, an
attacker cannot deduce the blinding coins from the IRs, en-
suring the confidentiality of the model parameter’s plaintexts.
Stage 1-2: Partitioning model with hidden operators. With
all coins prepared, given a partition ratio θ, we automatically
partition a portion of associative operators (that are morphed)
to GPU for inference acceleration. The partition function in
line 1∼13 of Algorithm 1 shows the pseudo-code.

Specifically, in the preprocessing phase, SOTER iterates
every operator in model M and randomly selects a portion of
associative operators and adds them to the partition set Og.
For instance, with θ = 0.8, an associative operator would have
an 80% chance to be partitioned to GPU. After all operators
are iterated, all operators in Og are partitioned to GPU for
inference acceleration.

Note that, SOTER always keeps top-W (W=2 by default)
operators in enclave even if these operators are associative
(Line 4). This design choice is made to ensure the input to
the first several partitioned operators on GPU (e.g., X1 in
Figure 3) are always unknown to the adversary, such that we
can stealthily check the integrity of all partitioned operators
by injecting fingerprint challenges (more details in §4.2).
Stage 2: Guarded black-box inference. Next, we present the
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Figure 4: Morphing only partitioned operators’ parameters
can leak the blinding coins in some partition cases.

end-to-end black-box inference process given that we have
prepared coins and partitioned a portion of operators to GPU.

As shown in Algorithm 2, SOTER first computes the re-
served top-W operators in enclave, and then iterate I2∼I4 as
follows. I2: SOTER finds the longest length of consecutively
partitioned operators in Og and computes the inference result
by forwarding the input through these operators (line 6∼11).
I3: Then SOTER copies the result back to enclave, restores
the real inference result by multiplying the reciprocal coins
of all operators in the last step (line 13), and then forwards
the result to operators maintained in enclave (before the next
copy to GPU). I4: SOTER morphs the forwarding result with
all coins of enclave operators in the last step (line 18), and
then copies back to GPU. This procedure terminates when
all partitioned operators on GPU are iterated. Then SOTER
normalizes the final result and returns the result to the client.

4.2 Integrity checking with fingerprints
Obliviousness requirement. To detect integrity breaches out-
side an enclave (as described in §3.2), a straw man approach
could be using a fingerprint (with ground-truth input/output
pair) to challenge the partitioned operator on GPU to recom-
pute the fingerprint input to provide proof, and report a crime
if the proof is different from the expected output.

However, such an approach needs to be oblivious. Since
the adversary can continuously monitor the inference process
and observe every intermediate result (IR) transmitted from
enclave to GPU, if using only a fixed set of fingerprints, the
adversary can easily distinguish those fixed challenges among
all IRs, and bypass our detection by returning correct proofs.
The timeliness-obliviousness dilemma. Unfortunately, triv-
ially using different fingerprints for integrity checking brings
a timeliness-obliviousness dilemma.

Specifically, generating new fingerprint input and pre-

Algorithm 2: MTR protocol at client c (online) (§4.1).
O Inference Phase (cross enclave & GPU).

1 Function secure_inference() do
O I1.

2 every client input X do
3 X .copyTo(“enclave”);
4 foreach index i ∈ normalize(W) do
5 X ← Oi(X) ; // Top-W Inference

6 start← next op in Og; end← next op in Oe;
7 while start < |O| do

O I2.
8 X .copyTo(“cuda”);
9 foreach index i ∈ range(start,end) do

10 X ← Oi(X) ; // GPU Inference

O I3.
11 X .copyTo (“enclave”);
12 X ←∏

end−1
start µ−1

i ×X ; // Restore
13 start ← end;
14 end ← start from Oend find the next op in Og;
15 foreach index i ∈ range(start,end−1) do
16 X ← Oi(X) ; // TEE Inference

O I4.
17 X ←∏

end−1
start µi×X ; // Morph

18 X ← normalize(X);
19 return Top1(X) ; // Final result

computing expected output in CPU would cause late detection,
because CPU computation for an operator is extremely slow
(up to 30x slower inference speed for linear operation); on the
other hand, if we use a fixed set of fingerprints for challenging
the integrity, we could timely detect breaches. However, the
detection would be easily bypassed by the adversary because
all fingerprints are now distinguishable.
SOTER’s insight and approach. Stemming from the same
observation of parameter morphing (§2.1), we tackle this
challenge by efficiently generating new fingerprints in CPU
without re-computing operators. At a high level, we take two
steps by first making a set of cornerstone fingerprints for each
partitioned operator, and then encapsulating new fingerprints
from these cornerstone fingerprints with a constant cost at
runtime based on the associativity property.
Step 1: Preparing cornerstone fingerprints. During the pre-
processing phase, SOTER prepares K (by default K=10) cor-
nerstone fingerprints for each partitioned operator. A finger-
print is a two-element tuple: {input, output}, where the input
is a randomly generated matrix and the output is pre-computed
by forwarding the input through a ready-to-partition operator.
The whole preparing procedure is running within enclave,
such that the correctness of each cornerstone fingerprint can
be guaranteed.
Step 2: Efficiently deriving new fingerprints in TEE. Now
with K cornerstone fingerprints for each partitioned operator,
SOTER efficiently derives oblivious fingerprints at runtime
by leveraging the general associativity property. Specifically,
with a fixed set of cornerstone fingerprints FPO[K] for each



partitioned operator O, we randomly select T fingerprints
and generate T random coefficients with SGX’s trustworthy
random number generator. Then, by applying the associativity
property (Equation 2), we generate a new fingerprint FPNew
as follows: the input for FPNew is ∑

T
i=1 Ti ∗FPO[i].input, i.e.,

we multiply each selected cornerstone fingerprint’s input with
a corresponding coefficient and add them all as the new input;
For the output, since the associativity property implies that
the corresponding output for a group of associated operators
has the same transformation as the input, thus we can directly
get the expected output as ∑

T
i=1 Ti ∗ FPO[i].out put without

conducting slow CPU inference for a given new input.
Step 3: Challenge-proof fingerprint issuing. For fast detec-
tion of integrity breaches, rather than submitting fingerprint
challenges for random user inference tasks, SOTER submits
fingerprint challenges for every user inference task. By do-
ing so, SOTER can detect any integrity breaches within only
ten fingerprints with an overwhelmingly high probability of
99.9% according to our theoretical analysis and evaluation
results (§6.4).

In detail, SOTER issues a challenge whenever a kernel
switch (an IR transmitted from enclave to GPU) happens.
When an IR (produced by client’s query) is sent to a parti-
tioned operator O, we challenge the integrity of O by send-
ing the IR to O together with a new FPO.input (produced in
Step 2), and compare the returned proof with the expected
FPO.output. Any mismatch reveals an integrity breach of par-
titioned operator O.

Whenever integrity breaches are detected, SOTER can sim-
ply abort the inference process and restart the preprocessing
phase to prepare new blinding coins and re-morph the GPU
operators with the procedures described in §3.3.

5 Implementation
We built SOTER on top of PyTorch C++ [51] with 5.3K LoC.
We chose PyTorch C++ as it incurs less memory footprint
compared to PyTorch, and previous work [63] has shown that
running programs with a high memory footprint within SGX
could incur prohibited overhead due to SGX’s small memory
capacity. SOTER uses Graphene-SGX to run SOTER’s compo-
nents within an SGX enclave (denoted as SOTER-Graphene),
because Graphene-SGX provides a library OS for running
applications within the enclave without any modifications.

Due to SGX’s limitation (§2.2), Graphene-SGX cannot di-
rectly access GPU within the enclave. SOTER tackles this
problem by spawning an extra PyTorch process (SOTER-
GPU) outside the enclave for offloading computations to GPU.
SOTER-Graphene and SOTER-GPU communicate through
shared memory (untrusted and not protected by SGX). We
did not choose to modify Graphene-SGX to forward GPU
computations at the syscall-level (e.g., by modifying ioctl),
because doing so results in frequent enclave transitions for
each GPU task. This is because launching one GPU task
requires multiple system calls (e.g., ioctl and mmap).

Runtime Construction. SOTER builds the runtime accord-
ing to the two-phase design (§3). In the preprocessing phase,
SOTER bootstraps the enclave with the standard SGX attesta-
tion library [14], and decrypts the model (in ONNX format [42])
sent from the server in the client enclave. The enclave boot-
strapping takes 1.84∼2.92 seconds. Then, the decrypted
model is processed by enclave_model_dispatcher, which
randomly selects a major fraction of associative operators
and morphs these operators’ parameters with random scalars
produced by the SGX trustworthy source (sgx_read_rand).

In the inference phase, SOTER-Graphene runs inferences
on DNN layers stored within TEE. When an inference com-
putation needs to be offloaded outside the enclave, SOTER-
Graphene serializes the activation using pickle, pushes the
data to the shared memory and hands over to SOTER-GPU;
SOTER-GPU deserializes the data and the morphed model,
computes the results, and pushes the result to the shared mem-
ory; SOTER-Graphene retrieves the results and continues exe-
cution.
Optimization. First, SOTER reduces the memory footprint by
reusing a single paraheap buffer to store operators’ parame-
ters, and gradually loading and decrypting parameters from
disk when they are required for computations in CPU. Second,
SOTER enables SGX paging [14] to support the execution of
large DNN models. Note that all baseline systems we evalu-
ated were also enabled with these two optimizations. Third,
SOTER takes unused CPU cycles to provision new coins and
produce newly morphed operators in TEE (§4.1), to replace
staled partitioned operators on GPU in a nonstop manner.

6 Evaluation
Testbed. Our evaluation was conducted on a server with
2.60GHZ Intel E3-1280 V6 CPU, 64GB memory, and SGX
support. The partitioned computations were performed on a
co-located Nvidia 2080TI GPU with 11 GB physical memory.
Baseline systems. To evaluate the performance of SOTER,
we compared SOTER with three notable TEE-based secure
inference systems, namely MLcapsule [27], AegisDNN [68]
and eNNclave [56]. MLcapsule is a popular TEE-shielding
open-source project, which shields the entire model within
the CPU enclave without any modification to parameters,
thus achieving model confidentiality, integrity (no partitioned
operators outside enclave) and retaining high accuracy as the
original trained model.

AegisDNN and eNNclave are two state-of-the-art partition-
based systems that empower accelerator-assisted low-latency
inference same as SOTER (Table 1). AegisDNN only shields
partial critical model layers in enclave and accelerates other
plaintext layers on a GPU. To decide which layers should be
partitioned, AegisDNN takes a user-specified argument (i.e.,
deadline for an inference task) and uses a silent data corrup-
tion mechanism [23] to learn each layer’s criticality. Aegis-
DNN is not open-source so we implemented all its protocols.
eNNclave handcrafts a partition plan by manually replacing
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Figure 5: Normalized latency of all systems running six preva-
lent models. All systems’ latency results are normalized to
insecure GPU inference latency (red dotted line). The value
on each red bar indicates SOTER’s averaged inference latency.

some layers’ parameters with public insensitive parameters,
and running these parameter-precision downgraded layers on
a GPU. Hence, eNNclave achieves model confidentiality at
the expense of accuracy, and is only suitable for specific mod-
els with publicly available parameters of known layers. We
ran eNNclave based on its open-source implementation.

Note that, both AegisDNN and eNNclave do not provide
integrity protection for a partitioned model. While some ap-
proaches (e.g., Darknight [28]) have integrity protection for
computations on untrusted accelerators, they are not designed
to protect model confidentiality at the untrusted edge; hence
they are orthogonal to the goals of SOTER.
Models and datasets. We evaluated all baseline systems with
six well-studied DNN models in the three most popular cat-
egories that are widely used in the deep learning commu-
nity [73], including a Multi-layer Perception (MLP) model,
four Convolution Neural Network models including Alexnet
(AN) [38], Densenet121 (DN) [31], VGG19 (VGG) [61],
Resnet152 (RN) [29], and a Transformer (TF) [64]. We used
the open-source release of each model.

We conducted our study on two representative datasets,
ImageNet [16], and WNMT [57], targeting both computer
vision (CV) and natural language processing (NLP) tasks.
ImageNet is a full-scale image dataset that contains 600k
images from 1k classes for CV studies; WNMT is the major
translation dataset that has been used in recent NLP studies.
Default setting. By default, we ran all experiments by sequen-

SOTER’s inference results (in milliseconds)

Model MLP AN VGG RN DN TF
P1: CPU (TEE) 0.19 1.65 25.38 92.18 41.65 439.52
P2: GPU 0.05 0.71 14.24 33.97 13.71 204.93
P3: Kernel Switch 0.01 0.18 0.83 25.98 5.6 41.52
P4: Integrity Check 0.03 0.34 4.56 14.75 6.02 73.77
End-to-end (P1+P2+P3+P4) 0.28 2.88 45.01 153.88 62.97 759.74

Table 3: End-to-end latency breakdown of SOTER.

AegisDNN’s inference results (in milliseconds)

Model MLP AN VGG RN DN TF
P1: CPU (TEE) 0.19 1.54 22.89 88.14 36.75 404.87
P2: GPU 0.07 0.67 19.96 52.3 20.07 198.64
P3: Kernel Switch 0.01 0.12 0.85 7.12 1.81 29.61
End-to-end (P1+P2+P3) 0.27 2.33 43.7 146.56 58.63 633.12

Table 4: End-to-end latency breakdown of AegisDNN.

tially feeding the inference data (i.e., input_batch_size=1).
Unless conducting sensitivity studies, we ran SOTER with
80% probability of partitioning an associative operator to run
on a GPU (i.e., selective partition ratio=0.8 in §4.1).

Our evaluation focuses on the following questions:
§6.1 How efficient is SOTER compared to baselines?
§6.2 How sensitive is SOTER’s performance to different

partition ratio?
§6.3 What could be leaked with and without SOTER?
§6.4 How robust is SOTER under integrity breaches?

6.1 End-to-end inference performance
We first investigated the end-to-end inference latency of
SOTER and three baseline systems with six prevalent models.
All reported measurements are the averaged inference latency
of 10k independent inference input.

Figure 5 shows the comparison of normalized inference la-
tency, where all systems are normalized to the insecure GPU
inference, which was measured by directly running model
inference on GPU without protection. SOTER’s end-to-end
latency (in milliseconds) is reported on its bar. N/A means a
system cannot handle such a case because eNNclave only re-
ports its method on partitioning VGG-series models. Overall,
SOTER’s latency was 1.21X ∼ 4.29X lower than MLcapsule
when running inferences on the same model. This is because
MLcapsule shields the entire model in the CPU enclave with-
out involving GPU, and CPU is at least one order of magnitude
less efficient than GPU in executing inference tasks [62].

Meanwhile, SOTER incurred 1.03X ∼ 1.27X higher latency
compared to AegisDNN for two reasons. First, SOTER addi-
tionally enforces integrity protection of partitioned operators
on GPU (§4.2) while AegisDNN does not support integrity
check. Second, AegisDNN partitions models in a coarse-
grained manner: by packing consecutive layers into blocks
and partitioning these blocks to run on a GPU, AegisDNN re-
duces the number of kernel switches (memory copy) between
enclave and GPU. In contrast, SOTER partitions model in a
fine-grained operator granularity, thus may incur more kernel
switches on some models. Next, we evaluate this moderate
performance downgrading with a detailed latency breakdown.
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Figure 6: Running SOTER on (a) VGG19 with different input
shapes (batch_sise, channels, height, weight), and (b) Trans-
former with different token size.

Latency breakdown. To understand SOTER’s low latency
and moderate overhead, we recorded the time taken for each
step of the workflows in SOTER and AegisDNN, as shown in
Table 3 and Table 4.

In addition to the integrity check and kernel switch over-
head, we observed that SOTER took more time for enclave
computations by comparing P1 in both tables. This is because
SOTER provides confidentiality for all model operators by
either shielding plaintext operators in enclave, or selectively
morphing associative operators to run on a GPU and revert-
ing concealed execution results to accurate results in enclave
with preserved blinding coins (§4.1). In contrast, AegisDNN
only protects confidentiality for partial operators in enclave,
and leaves other operators’ plaintext parameters to the un-
trusted GPU. Therefore, SOTER paid additional overhead for
parameter morphing and restoration in enclave.

Besides, when running models with complex dependencies
among operators (Resnet, Transformer), SOTER’s operator-
level partition protocol incurred more frequent kernel switches
than AegisDNN (P3), but such design protects the entire
model architecture from being leaked. As recent work on
AI demonstrates that model architecture has a significant im-
pact on achieving high inference accuracy [2, 22], a complex,
thus potentially well-designed architecture is urgent to get
protected. In contrast, AegisDNN partitions a bunch of con-
secutive layers to GPU thus leaking architecture information
to the adversary outside enclave. We will further investigate
the information leakage in all systems in §6.3.

Overall, compared to the TEE-shielding baseline (MLCap-
sule [27]), SOTER achieves lower inference latency by se-
curely partitioning most associative operators to run on an un-
trusted GPU, and the performance gain brought by GPU com-
putations on associative operators dominates the overhead for
TEE paging and TEE-GPU interaction (Table 3). Typical as-
sociative operators (e.g., convolution and fully connected) are
proven to be the major computational bottleneck in neural net-
works. For example, 93.5% of the computation on the classic
VGG19 model is spent on convolution [61]. However, com-
pared with the partition-based baselines (eNNclave [56] and
AegisDNN [68]), SOTER incurs slightly higher (up to 1.27X)
latency for using fingerprints to detect integrity breaches (la-
tency breakdown in Table 3 and Table 4).

No accuracy loss. SOTER retained high inference accuracy
provided by original models, because SOTER ran either un-
modified operators in enclave or morphed associative opera-
tors in GPU, while concealed execution results of morphed op-
erators can be reverted with the associativity property (§2.1).
MLcapsule directly shields the entire model in enclave with-
out modification so it retained high original accuracy; Aegis-
DNN partitions plaintext model layers to run on a GPU so
it incurred no accuracy downgradation as well; eNNclave
obfuscates partitioned operators’ parameters by replacing
them with public parameters. Since public parameters are
not tailored for a given task, eNNclave incurred 1% ∼ 5.5%
accuracy drops on the evaluated VGG19 model.

In summary, SOTER achieves much lower inference latency
than MLcapsule, but SOTER incurs slightly higher latency
than AegisDNN and eNNclave because SOTER pays addi-
tional effort to provide stronger model confidentiality and
integrity, and retains high accuracy same as original models.

6.2 Sensitivity
We tested different partition ratios (denoted as θ) to look into
the performance sensitivity of SOTER. The experiments were
conducted on VGG19 with different input shapes, and we ran
different values of θ for each input shape; each experiment
was conducted ten times, as shown in Figure 6a.

The shading next to each line is the performance jitter
caused by different computation volumes of randomly se-
lected associative operators partitioned to GPU. With an in-
creased θ, SOTER’s inference latency dropped accordingly
because more associative operators were selected and par-
titioned to a co-located GPU for acceleration. Interestingly,
we observed that when θ is small (0.1∼ 0.2), the latency of
θ = 0.2 could be even larger than θ = 0.1. This instability is
because, with a small partition ratio, the partitioned operators
were fragmented, and GPU’s performance gain could be amor-
tized by the frequent kernel switches between enclave and
GPU. When θ increases, the latency gain became more stable
because the partitioned operators became less fragmented,
thus fewer kernel switches would occur.

Comparing figure 6a with figure 6b, we observed that
SOTER achieved more stable performance on Transformer.
This is because, the number of operators in VGG19 is rela-
tively limited (only 41 associative operators with 18 linear
operators), while the Transformer has a rich set of operators
(360 associative operators with 311 linear operators). Hence,
the randomness of selecting associative operators with differ-
ent computation volumes was downgraded, leading to a more
stable performance. This implies that SOTER is more suitable
for big complex models with a rich set of operators.

6.3 Security analysis
As mentioned in §3.2, SOTER provides semantic security
guarantee for protecting model confidentiality: knowing only
ciphertexts of parameter-morphed operators, it is infeasible
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Figure 7: The model stealing experiments of all baseline sys-
tems running (a) VGG19 and (b) Transformer. The red dotted
line marks the ground-truth accuracy/BLEU score of VGG19
and Transformer respectively.

for a computationally-bounded adversary to learn about op-
erators’ exact blinding coins hidden in enclave. It is notable
that increasing the number of partitioned morphed operators
(with a larger θ) does not degrade the confidentiality because
(1) SOTER generates coins for each operator independently
in enclave, and (2) an execution result of a morphed operator
is concealed to ensure that it reveals neither the coin of that
operator, nor the coins of all previous operators (§4.1).
Quantifying information leakage. To evaluate whether our
confidentiality analysis given above has a meaningful effect
in practice, we applied model stealing attacks [35, 47] on all
baseline systems to quantify how much information could
leak with that system. A model stealing attack feeds synthetic
data to a victim model to get an output, and trains a substitute
model (depicted as SubM) with these new samples to mimic
the inference behavior of the victim model.
• Setup. We targeted two popular models, VGG19 and Trans-
former, running on all baseline systems. We did not run Trans-
former on eNNclave because eNNclave does not support such
a case. We conducted the state-of-the-art Wang’s attack [67]
for model stealing. Concretely, for the training dataset, with
the bounded computational capability assumption [35], we
generated synthetic data which composes 10% of total train-
ing samples; for the backbone of the substitute model, we
adopted VGG13 as the architecture for VGG19 and the stan-
dard encoder/decoder architecture for Transformer. We initial-
ized all unknown parameters using a truncated normal distri-
bution with std of 0.02 and learning rate of 0.0001. By training
on one Nvidia 2080TI GPU, SubV GG converged within 150
epochs and SubT F converged within 13 epochs.
• Results. Figure 7 depicts the inference results of the trained
substitute model on all baselines. MLcapsule, which shields
the entire model within enclave (i.e., θ = 0), achieved the
minimum accuracy through the stealing attack. The accuracy
results of AegisDNN grew as θ increased, because AegisDNN
only runs partial model layers in enclave and exposes other
layers with plaintexts to the adversary. With more plaintext
revealed in AegisDNN, the accuracy of SubV GG and BLEU
of SubT F increased dramatically. SOTER, however, achieved
comparable results as eNNclave, which directly replaces par-
titioned operators’ parameters with insensitive public parame-
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Figure 8: The l2 distance distribution of randomly sampled fin-
gerprints with or without oblivious fingerprinting technique.

ters. Notably, this implied that SOTER’s MTR protocol with
semantic security guarantee is effective to provide sufficient
model confidentiality.

6.4 Robustness to integrity breaches
In this subsection, we begin by investigating the obliviousness
of SOTER-generated fingerprints for obfuscating the adversary.
Then we evaluated SOTER’s robustness to integrity breaches
of partitioned operators outside enclave.

Figure 8 shows that, when running with SOTER’s oblivious
fingerprinting technique, the l2 distance between randomly
sampled fingerprints shares the same form of normal distribu-
tion as normal query input (Figure 8a). Hence the fingerprints
are oblivious to the adversary. Whereas, when running with
fixed fingerprints (Figure 8b), the distribution dramatically
changed, hence those fixed fingerprints are observable to the
adversary. We evaluated the robustness of SOTER under 10K
random perturbation attacks, which randomly perturbs the
parameters of partitioned operators. All attacks were success-
fully detected, and 99.9% attacks were detected with less than
ten fingerprints while we incurred zero false positives.

7 Discussion
Model leakage from black-box attacks. Modern black-box
attacks [4, 35, 47, 50] use inference APIs of an inference
service to learn private information of an offloaded model
or even the training dataset, by using the inference results of
perturbed input queries. These attacks widely exist in either
cloud-side or client-side inference systems [27, 36, 44, 56], as
inference systems inevitably open access to arbitrary queries.

Currently, there is no general defense against black-box at-
tacks other than query authentication and rate limiting [35,47].
But fortunately, defenses against specific attacks are emerg-
ing. For instance, Prada [35] uses query distance auditing to
mitigate model extraction attacks with adversarial examples;
Shokroi et al. [60] use differential privacy to train DNNs that
do not leak model owner’s sensitive training datasets.

The guarantees of SOTER, like all prior secure inference
systems targeting at protecting the model at the edge or the
cloud, are complementary to those provided by any defenses.
With sufficient engineering effort, these mitigations can be
integrated into SOTER to provide even stronger privacy guar-
antees, and we leave it to future work.
Computation overflow. Multiplying the model parameter
with SOTER’s blinding coin (§4.1) may, in rare cases, causes



potential computation overflows (we did not find any compu-
tation overflow in our experiments in §6). However, even if
an overflow occasionally happens, SOTER can immediately
detect such overflow by checking if the computed result is
INF or -INF [39]. Then, SOTER can simply re-morph the
overflowed GPU operator by replacing the blinding coin with
a smaller new coin, which can be prepared offline (§4.1).
Trusted GPU. Although there are some promising trusted
GPU research systems [3, 32, 46, 65] that can protect model
confidentiality and accelerate inference with the strong GPU
computing power, these systems are not publicly available
as they either require extensive hardware modifications [65]
or support only hardware simulators [3, 32, 46]. Thus, in this
paper, we consider only publicly available (untrusted) GPU
deployments.
Limitation. SOTER requires clients at the edge to be equipped
with TEE (e.g., Intel SGX) due to the lack of commonly
available trusted GPUs [3,65]. SGX has been pervasively used
in existing secure inference systems [27,56] and is commonly
available in modern Intel CPUs. While the inherited SGX
vulnerabilities of sophisticated side-channel attacks based on
timing or cache access patterns still exist [18, 59, 66], we
do not consider these attacks currently, and we believe these
attacks can be mitigated by integrating with state-of-the-art
defenses [18, 19, 55].

8 Conclusion
We present SOTER, the first secure inference system that en-
sures model confidentiality, low latency, high accuracy with
integrity protection for general DNN models. SOTER’s MTR
protocol carries out cooperative executions between the TEE
and GPU. Specifically, SOTER morphs a fraction of associa-
tive operators’ parameters to run on a GPU, SOTER conceals
the execution results on GPU and then restores the real execu-
tion results in TEE. SOTER efficiently generates fingerprints
to check the integrity of partitioned operators. Evaluation on
notable client-side secure inference systems and all preva-
lent types of DNN models shows that, compared to exist-
ing relevant baselines, SOTER achieved comparable strong
confidentiality as the TEE-shielding approach, comparable
low-latency as the partition-based approach, high accuracy
same as insecure inference, and overwhelming high probabil-
ity of detecting integrity breaches of any partitioned operators.
These features make SOTER unique in encouraging enormous
model providers to develop powerful models and deploy them
on third-party edge devices.
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