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NEXUS: Secure and Efficient Collaborative Analytics on Encrypted Databases

Abstract

Encrypted Databases (EDBs) have become a compelling
solution to facilitate collaborative analytics among multiple
organizations, by allowing to pool the organizations’ private
data in an encrypted form and run analytical queries over the
encrypted data to derive mutually beneficial insights, e.g., for
medical studies across hospitals, fraud detection across banks,
etc. However, existing EDBs support neither general queries
efficiently with sublinear (ideally logarithmic) search com-
plexity, nor protecting query integrity in the face of prevailing
integrity attacks.

We present NEXUS, the first query system that allows mul-
tiple parties to efficiently run general SQL queries on EDBs
with both data confidentiality and query integrity guarantees.
NEXUS features a new Merkle rangeFilter Tree (MFT) secure
index abstraction, which utilizes the membership information
of encrypted data to construct a logarithmic-depth recursive
index structure resembling a Merkle tree. Unlike prior works
employing expensive query-specific cryptographic schemes,
MFT supports general queries by relying on efficient data
membership evaluation, without revealing plaintexts. More-
over, the recursive index structure of MFT empowers NEXUS
to authenticate query results, thus ensuring query integrity
simutaneously. Evaluation of NEXUS on popular SQL and
NoSQL databases shows up to 94.7% lower latency and up to
15.2X higher throughput compared to the state-of-the-art.

1. Introduction

Numerous mission-critical services today collect valuable yet
sensitive user data. By pooling this data together and jointly
performing query analytics on the aggregated data, these ser-
vices can obtain valuable insights that benefit all parties in-
volved. For instance, such collaboration can enhance credit
risk models in financial services [12, 69], facilitate medical
studies for prompt disaster responses [32, 37, 65, 20, 40],
and optimize transportation routes to reduce congestion and
enhance overall mobility in cities [71, 54, 23]. However, the
sharing of sensitive data among different organizations is often
hindered due to privacy concerns or business competition.

To securely store and query private data, organizations are
increasingly adopting cloud encrypted databases (EDBs) [51,
64, 3, 5, 50]. EDBs promise to enable such collaborative sce-
narios by storing data in an encrypted form and refraining from
decrypting it on the fly. This ensures data confidentiality even
against privileged database administrators or external attackers
with full access to the data stored in EDB servers. To attain
comparable computing capabilities to insecure databases like

MySQL [45], EDBs often rely on Homomorphic Encryption
(HE) [22, 43, 46], which allows computation over encrypted
data without the need for decryption.

Unfortunately, although the industry and academia have
made great efforts to develop EDBs (e.g., CryptDB [51], HE-
libDB [5], Senate [50]) with query capabilities similar to in-
secure databases, none of existing EDBs can efficiently run
collaborative analytical queries. This is due to two major
challenges that stem from the encrypted nature of EDB data.

Firstly, analytical queries can encompass various types, in-
cluding point and range queries, in many scenarios [12, 32, 54].
While HE allows for arbitrary query computations, it lacks
support for encrypted search capabilities. Thus, one primary
goal for a collaborative query system is to handle diverse
query types on HE data while aiming to achieve a search com-
plexity that is sublinear to the size of the database. Ideally,
this complexity should be comparable to that of an insecure
database [3, 53, 45] that utilize a B*-tree (or its variants) to
achieve logarithmic-complexity searches.

However, existing systems lack efficient support for general
query types with logarithmic search complexity, as they rely
on cryptographic tools that are inherently designed to meet
specific query requirements. For instance, Senate [50] uses
multi-party computation [18, 73] and requires negotiating the
specific query type and data sharing among parties for each
query, leading to significant communication overhead. HE-
libDB [5] effectively supports point queries by computing
specific HE functions over the entire database to compare the
equivalence between HE-encrypted data, but it fails to handle
range queries. Although CryptDB [51] leverages property-
preserving encryption [26, 4] to support both point and range
queries with logarithmic search complexity, it still incurs sig-
nificant cryptographic overhead during encrypted searches, as
evaluated in §6.

The second challenge arises from the vulnerability of EDBs
to integrity breaches when hosted on an untrusted cloud. In
such scenarios, attackers can manipulate query results by mod-
ifying, replaying, or dropping data [76, 82]. These manipula-
tions result in incorrect analytical outcomes, jeopardizing the
collaborative query service for all parties involved.

Nevertheless, existing systems overlook the vulnerability
to integrity breaches and provide a weaker security guarantee.
Specifically, they assume that even if the EDB is compro-
mised, it will faithfully follow the protocol. This assumption
is unrealistic in many scenarios for two main reasons. First,
since each party needs to entrust its sensitive data to EDBs, if
the database colludes with competitors, the failure to produce
accurate analytical results would lead to a loss of business



interests. Second, in real-world attacks, attackers often have
the ability to install malware on the server or gain control over
it [44, 77], allowing them to alter the database’s behavior.

In this work, we present NEXUS', the first secure query
system for collaborative data analytics that addresses the afore-
mentioned challenges, via a secure index abstraction named
Merkle rangeFilter Tree (MFT). Based on the MFT abstraction,
we establish an end-to-end secure query workflow that ensures
both data confidentiality and query integrity: NEXUS utilizes
MFTs to locate query-dependent EDBs, which are databases
containing matching records for the query parameters, then
distributes client queries to these identified EDBs for execu-
tion. Within these EDBs, NEXUS performs MFT searches
to retrieve the requested data without decrypting them. Last,
NEXUS verifies the integrity of query results and securely
aggregates them before sending them back to the clients.

To efficiently support general queries in NEXUS’s workflow,
instead of relying on expensive cryptographic techniques (like
HEIibDB [5] and CryptDB [51]), MFT employs a lightweight
approach by utilizing data membership information to con-
struct a searchable data structure, drawing inspiration from the
traditional Bloom filter [13]. As depicted in Figure 1, NEXUS
transforms data into confidential cipher identifiers and places
them at the bottom layer of the structure. The membership
information linked to these identifiers is propagated to the
root through the Union operation and subsequently utilized
for encrypted searching purposes.

This design choice offers two notable benefits. Firstly, it
enables top-down binary encrypted search by evaluating the
membership of parameters (i.e., by determining € or ¢) at
each index branch, without revealing plaintexts. Secondly, the
membership propagation approach leads to a Merkle-tree-like
structure that facilitates query authentication by verifying if the
requested data is included in the query results, similar to the
Merkle tree verification in cryptocurrency systems [55, 48].

Concretely, to defend against integrity breaches, NEXUS
employs query authentication via two rules. Firstly (freshness
rule), NEXUS verifies whether the query results are based on
the latest version by checking the MAC on both the fetched
records and identifiers used for indexing. This rule ensures that
any modification or replay attempts are detected. Secondly
(completeness rule), to detect drops of query results, NEXUS
verifies whether the query results fall within the specified query
boundaries and whether the MFT root rebuilt from the results
aligns with the original MFT root. Therefore, by leveraging
the MFT abstraction, NEXUS achieves data confidentiality and
query integrity in a unified manner.

We implemented NEXUS on CryptDB [51], a widely used
modular framework for evaluating EDBs. We built two EDBs
by integrating NEXUS with MySQL [45], the popular SQL
backend for EDBs, and WiredTiger [16], the default NoSQL
key-value backend for MongoDB. In addition, we devised

INEXUS stands for the interconnected membership-based search index.
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Figure 1: NEXUS’s core index concept for secure search. The left
part depicts the traditional insecure approach that relies on numerical
comparison for index traversal. In contrast, NEXUS traverses by
evaluating data membership of transformed cipher identifiers (e.g.,
*), without revealing plaintexts (§4).

a data aggregation protocol to securely aggregate analytical
results from collaborative parties (§4.3). We compared NEXUS
with CryptDB [51] and HEIibDB [5] using typical workloads
(e.g., TPC-C [41]). The evaluation results show that:
e NEXUS is general. NEXUS was able to support general
queries, including point, range, join, insert, update, and delete
among EDBs, while HElibDB only supports point queries.
Moreover, NEXUS achieved logarithmic search complexity for
all these query types, as proven in §4.4 and evaluated in §6.
e NEXUS is efficient. NEXUS achieved up to 28% lower la-
tency and 1.88X higher throughput than CryptDB. Compared
to HEIibDB, NEXUS achieved up to 94.7% lower latency
and 15.2X higher throughput. All these improvements were
achieved while maintaining query integrity, which was not
enforced in the baselines.
e NEXUS is scalable. NEXUS scales to an increasing num-
ber of involving parties and larger databases. As the size of
databases grows, NEXUS maintains logarithmically increasing
latency, which is consistent with our complexity analysis.
Our main contribution is MFT, a new secure index abstrac-
tion that enables multiple parties to run general SQL queries
on EDBs with logarithmic search complexity. We exploit the
membership information for secure index construction, allow-
ing for encrypted search and query authentication through
membership evaluation, ensuring both data confidentiality and
query integrity in a unified manner. These unique features
enable NEXUS to facilitate secure data sharing and collabora-
tive queries across multiple parties, making it highly suitable
for various mission-critical distributed applications such as
medical diagnosis [42, 39], fraud detection [79, 8], and anti-
money laundering [59, 70]. NEXUS’s source code is released
on github.com/2024asplos405/Nexus.

2. Related Work

2.1. Encrypted Databases on the Cloud

Organizations (e.g., enterprises or individuals) today are in-
creasingly shifting their sensitive data to cloud databases due
to their scalability and rich query capabilities. Encrypted
databases (EDBs) promise to protect the confidentiality of
outsourced sensitive data from both privileged insiders, such
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Table 1: Comparison of representative systems. "« / o" denotes
whether the system utilizes trusted hardware (x), or a software-only
approach (e). n/a. means not supporting such query type.

as database administrators, and external attackers that alter the
database behaviors [1, 79, 3, 5, 50]. Existing EDBs can be
classified into two main categories, as outlined in Table 1.

The first category utilizes Trusted Execution Environment
(TEE) to create a secure area that ensures both data confiden-
tiality and query integrity [53, 63]. TEE databases like En-
claveDB [53] and EdgelessDB [3] offer straightforward query
support by searching on plaintexts through TEE-shielded stan-
dard indexes like BT -trees, thus retaining the logarithmic
time complexity typical of these indexes. However, relying
on TEEs involves trusting specific hardware vendors like In-
tel [30] and AMD [62], which has prompted many organiza-
tions to explore software-only approaches [1, 79, 27]. NEXUS
belongs to the software-only category.

The second (software-only) category uses homomorphic en-
cryption (HE), especially fully HE schemes like BGV [22], to
enable arbitrary computations while concealing the plaintexts.
Existing HE databases employ various cryptographic tools to
enhance the searchability of encrypted data. CryptDB [51]
utilizes a recursive onion-like encryption process with differ-
ent property-preserving encryption algorithms [11, 66, 49],
building indexes on each layer of onion-encrypted data to fa-
cilitate specific types of queries. HElibDB relies on Fermat’s
Little Theorem [21] to directly evaluate the equivalence of HE
data but requires scanning the entire database. Senate [50] em-
ploys secure multi-party computation [18, 73] but necessitates
online negotiation and does not support encrypted search.

Indeed, these cryptographic approaches provide a strong
confidentiality guarantee (named IND-CPA [2]), but they suf-
fer from limited query capabilities, high cryptographic over-
head, and overlook the vulnerability to integrity breaches.
Dory [17] takes the first step in building indexes using efficient
cryptographic hash functions like SHA-256 [60], ensuring re-
laxed yet sufficient irreversible security [57], which means the
encrypted data cannot be reversed to plaintexts even with the
knowledge of the hash functions. Although Dory effectively
protects both data confidentiality and query integrity, it sup-
ports only point queries on file stores and with linear search
complexity, making it unsuitable for our requirements. Like
Dory, NEXUS also ensures irreversible security through the
use of cryptographic hash functions, but NEXUS goes beyond
by supporting general queries with sublinear complexity.

2.2. Example Queries

Our motivation is to enable efficient searches on EDBs and
connect them, such that a client can run general analytical
queries in distributed EDBs managed by different parties. In
principle, NEXUS can support arbitrary queries powered by
point and range searches; it does not currently support fuzzy
search using operators such as ‘LIKE’ [45]. We now give two
use cases and example queries facilitated by NEXUS.

Query 1. Collaborative medical study [27]. COVID-19 is
a contagious disease caused by the coronavirus. As part of a
clinical research study, there are ¢ hospitals P;... P, that wish
to collaboratively analyze the sequela and the total number
of individuals affected by COVID-19. However, they cannot
directly share their databases with each other to run this query
due to privacy concerns regarding patient information.

SELECT COUNT (x), sequela

FROM medical_encrypted_databases
JOIN on patient_ID

WHERE disease.is_infected = true
AND disease.category = ‘COVID-19’;

[T SV -

Query 2. Government statistics [79]. The government needs
to query the total fiscal spending last year of ¢ different de-
partments P;. .. ;. However, these departments are bound by
privacy regulations and thus cannot directly publish private cit-
izen information with the government. Despite this constraint,
the departments still need to collaboratively run the analytical
query, to sum up the fiscal spending.

SELECT SUM (expenses), department_ID

FROM departmental_encrypted_databases

JOIN on expenses.department_ID

WHERE expenses.timestamp BETWEEN 2022 AND 2023
AND department.category = ‘financial’;
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2.3. Preliminaries

Bloom filter [13]. It is a compact data structure designed for
efficient membership testing. It operates by using a single
set to store the hash values of all elements. Specifically, a
Bloom filter B is an m-bit array that uses k independent and
uniformly distributed cryptographic hash functions {H;} (e.g.,
SHA-256), each of which maps an element to a position in
B. To insert an element x into the filter, we compute its hash
using {H,} and set all bits at the corresponding indices in B to
1. To test if an element y is a member of the set, we again hash
y using {H;}. If any of the bits at the corresponding indices
in B are 0, then y is definitely not in the set (i.e., zero false
negatives); otherwise, y has a high probability of being in the
set (with small configurable false positives [13]).

Notably, while prior systems have utilized Bloom filters
to build indexes, their use was restricted to specific database
types (e.g., file stores) or targeted specific queries for a single
party [17, 47, 35]. NEXUS differentiates itself by striving to
facilitate general queries in a multi-party joint query scenario.



3. Overview

3.1. System Setup

Entities. Same as existing query systems [45, 5, 52], NEXUS
consists of three participants: clients, EDB servers (for short,
servers), and a proxy. Clients are grouped into parties (e.g.,
banks and hospitals), with each party outsourcing its sensi-
tive data to servers hosted on an untrusted cloud. The servers
provide query services to clients collaboratively, by intercept-
ing all SQL queries through a proxy, which is responsible
for dispatching queries to execute on query-dependent servers
(EDBs containing the requested data) and aggregating the
query results for clients.

Data model. We employ the relational data model to exem-
plify our design. In NEXUS, an encrypted table T contains
n confidential columns (or attributes) and has a primary key.
Clients encrypt every value before sending it to the server.
Concretely, for a row (i.e., record) r, the value v; in column
¢; is represented as ciphertext E(v;) using an encryption algo-
rithm E, which is typically the fully HE scheme BGV [22].
Each party (along with its clients) cannot disclose its HE se-
cret key to any servers or other parties for data confidentiality.
NEXUS provides the flexibility for clients to encrypt different
columns with distinct secret keys and supports searching on
non-primary keys using secondary indexes [61].

In NEXUS, all records are versioned. This involves clients
maintaining the latest version of their own record locally, and
keeping it synchronized with the corresponding servers. In
such a case, clients are assumed to have already retrieved the
latest version of a record before submitting a new update query
to that particular record.

NEXUS exhibits extensibility owing to its unclustered ar-
chitecture [64] resembling insecure databases [45, 52]. This
separates the design of database indexes from the underlying
storage, thus allowing NEXUS, with its new secure index, to
seamlessly support both the structured relational data model
and unstructured key-value pairs (both evaluated in §6).

3.2. Threat Model and Guarantees

NEXUS adopts a strong threat model in which a malicious
adversary 2{ can corrupt databases and arbitrarily deviate from
NEXUS’s protocol to learn private data. 2( can either passively
observe or actively manipulate query results and tamper with
stored data in the databases via modification, replay, or dele-
tion. However, in line with prior research [17, 51], we assume
that 2 cannot reverse cryptographic hash functions (e.g., SHA-
256) or compromise secret keys for encryption. This threat
includes compromises of database software and even access
to the RAM of physical machines. Given the increasing trend
of outsourcing databases to public cloud environments and
relying on third-party database administrators [45, 52], we
believe this threat is increasingly important.

Apart from the databases, we assume all other entities are
honest. Specifically, we assume that clients are always hon-
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its secure index abstraction Merkle rangeFilter Tree (MFT).

est and do not collude with any database, as the identities of
all joint parties (including their clients) are typically known
in a collaborative query system [75, 50]. Same as existing
systems (e.g., CryptDB [51]), we also assume that the proxy
is honest. In real-world deployments of collaborative query
systems [34, 33], a proxy is usually deployed within a secure
and controlled environment in an organization’s infrastructure;
the trustworthiness of the proxy is based on the reputation of
the organization. While blacklisting [74, 67] and BFT tech-
niques [55, 48] are alternative methods to tolerate a corrupted
proxy, they are outside the scope of this work.

Same as [17, 51], we assume the underlying storage engine

is secure. This ensures that a server can reliably retrieve the
correct data version from the underlying storage by detecting
and preventing rollback and fork attacks, which have been
extensively studied in prior works [15, 68, 76].
Guarantees. NEXUS offers two crucial security guarantees.
Firstly, it provides confidentiality for both data content and
the names of columns and tables. Secondly, NEXUS maintains
query integrity, which means any integrity breaches in query
results will be detected. However, it is important to note
that NEXUS does not hide the size of databases, the index
volume, the table structure, the number of rows, or the types of
columns. The security of NEXUS is not perfect: NEXUS could
reveal side-channel information that corresponds to the type
of computation that queries perform on the database, such as
equality comparisons and sorting operations.

How close is NEXUS to “optimal” security? Fundamentally,
optimal security is achieved in recent theoretical cryptography
works by concealing all side-channel information or database
access patterns [50, 75, 78]; however, these proposals are im-
practical due to prohibitively high computational overhead. In
contrast, NEXUS prioritizes practicality. We leave the integra-
tion of advanced side-channel defenses for future work.

3.3. NEXUS’s Workflow Overview

Figure 2 shows a typical point query workflow in three phases.
e Phase 1: query dispatch. To submit a point query Q (€)),
the client transforms her parameter x into a secure primitive
called rangefilter (describe in §4.2). This primitive, denoted
as ty, acts as a cipher identifier for x to search and is always



encrypted. The client generates rangefilters {z,} for all joint
parties using the shared rangefilter keys (i.e., SHA-256 hash
keys) as the query parameter, encrypts Q via AES, signs Q,
and sends to the proxy via a TLS-enabled link. The proxy will
drop the connection if malformed queries are received, e.g.,
those with invalid signatures from unknown parties.

The proxy runs a dispatching thread to determine the appro-
priate servers to forward queries (9). Upon receiving Q, the
proxy decrypts it and searches for {z,} in pre-stored secure
indexes called Merkle rangeFilter Trees (MFT) of collabora-
tive servers, which function as a group of filters. If there are
relevant records in d (i.e., records that match the query param-
eter), the proxy forwards Q to that server. This relevance is
confirmed by searching parameters in d’s MFT and it does
not return a ¢ (empty set). Meanwhile, the proxy generates a
list of parties Py to which d; belongs, and submits P;y to the
client and the aggregator thread (see Phase 3).

e Phase 2: local search. NEXUS adopts a new approach
to search for requested data (e.g., ¢.f, in server &) within
encrypted data on each server by using MFTs (9). The MFT
is constructed by organizing rangefilters into a Merkle-tree-
like data structure, where each inner node’s value is the Union
operation result of its child nodes. The insight of such index
construction is to enable efficient binary search using data
membership information, eliminating the need for plaintext
numerical comparisons as in BT -trees.

o Phase 3: data aggregate. Upon receiving query results R
from P;’s EDB, the proxy initiates a two-step integrity check
(9). Firstly, it verifies whether R is based on the latest ver-
sion and whether the data content remains complete. This is
achieved by validating the MAC on both the versioned records
and rangefilters, ensuring that any modifications or replay at-
tempts are detected. Secondly, it detects any drops in the query
results by confirming whether R matches the query parameters
or falls within the specified boundary (depending on the query
type) and whether the MFT root rebuilt from R aligns with
P;’s original MFT root.

Once the integrity check is passed, the proxy aggregates all
query results by performing key switching on the results using
the tokens requested from the parties belonging to P (o).
The token requesting process runs in parallel with Phase 2.
The key switching process ensures that the client can decrypt
and utilize the analytical results without revealing other parties’
secret keys (HE keys for encrypting data). Finally, the proxy
joins the key-switched results (@) and returns them to the
client (0).

Overall, the highlight of NEXUS lies in its ability to provide
both data confidentiality and query integrity, while maintaining
high efficiency with logarithmic search complexity for general
SQL queries. This is achieved by NEXUS’s MFT secure index,
featuring a new insight of membership-based encrypted search
and overcoming the shortcomings of prior cryptographic meth-
ods. Leveraging the MFT, NEXUS builds the first unified query
system that facilitates multi-party collaborative analytics.

4. Protocol Description

4.1. Preliminary Index

Opportunities. In the context of enabling encrypted search
for collaborative analytics, the Bloom filter possesses a key
confidential characteristic, which stems from its design of stor-
ing only the hash of elements rather than the original plaintexts
(82.3). By relying on cryptographic hash functions, the Bloom
filter becomes computationally infeasible to be reversed back
to plaintexts even with the knowledge of these hash functions,
which has been established in prior research [25].

Unfortunately, the conventional Bloom filter is monolithic
in nature, in the sense that all elements are assigned to a single
bit array. As a result, it can only support membership tests,
indicating the presence of an element (hash) in a set. How-
ever, it is not capable of functioning as an index for locating
encrypted data within the storage.

Design rationale. We observe that the confidential character-
istic of the Bloom filter can be useful for encrypted search,
thus in our preliminary design, we decompose the monolithic
Bloom filter into multiple subfilters, with each subfilter solely
storing the hash (in bits) for a single element.

Definition 1 (NEXUS’s subfilter). A subfilter is the Bloom filter
for individual data, i.e., only one element (hash) is assigned
to a set for membership tests.

Figure 3 depicts the core concept of utilizing subfilters for
encrypted search. Specifically, subfilters have a constant array
size and are placed at the leaf nodes, wherein each subfilter rep-
resents a primary (index) key (e.g., "111000" for x). These
subfilters are sorted in an order of plaintext keys. For each
inner node, its value is determined by performing element-
wise OR gate computations on its child subfilter nodes: given
subfilters with length m, for an inner node inner with [ child
nodes {cny,...,cn;}, each bit in the inner node’s subfilter is

inner[i] = cni[iJ OR ... ORcenyli] , Vi€ [0,m] (1)

The design rationale behind the subfilter tree is that, if any
entry in a child subfilter node is "1 ", the OR gate computation
ensures that the corresponding entry in its parent subfilter node
must also contain the "1" bit. This feature guarantees that, if a
record exists in a node, it must also exist in its parent node. We
term this approach membership propagation, which enables
the utilization of data membership information for top-down
tree traversal while preserving confidentiality inherited from
cryptographic hash functions used for constructing subfilters,
eliminating the need for plaintext numerical comparisons.
Search process. Figure 3 demonstrates the search process for
a point query. To begin, NEXUS transforms the query parame-
ter into a subfilter using Equation 1, NEXUS then traverses the
subfilter tree to locate the corresponding record. During the
traversal, NEXUS determines the path (in ) with subfilter
comparisons, which verifies if every "1 " bit in the parameter’s
subfilter exists in the current child node’s subfilter. If such ver-
ification succeeds, the parameter is passed to that child node,
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Figure 3: NEXUS’s core concept of membership-based search.

and the process continues until the bottom layer is reached. At
the bottom layer, a leaf node confirms the match of every bit
since each subfilter exclusively contains one index key.
Similar to a point search, a range search process within
NEXUS involves transforming the range parameters into sub-
filters and locating two matched leaf nodes; subsequently, all
records situated between two leaf nodes are returned. This
retrieval process is similar to the conventional B -tree.

4.2. NEXUS’s Complete Encrypted Search Index

Challenges. The subfilter tree efficiently tackles point and
range queries; however, the new membership-based indexing
approach brings two distinct challenges. Firstly, the subfilter
tree cannot search for non-existent keys. Clients can submit
range queries with imprecise parameters that do not exist in
any of the collaborative servers. The absence of ordering
among subfilters makes it infeasible to locate the leaf node
corresponding to a non-existent key by finding two adjacent
subfilters. Secondly, for the same reason, the subfilter tree
can solely support read queries because it cannot locate the
intended write positions among the leaf nodes.

Rangefilter primitive. Based on the preliminary subfilter, we
propose rangefilter, a primitive designed to address the afore-
mentioned challenges. The key idea of this primitive lies in
generating confidential biases for subfilters. These biases must
adhere to two essential rules. Firstly, the bias should maintain
monotonicity, ensuring that larger index keys consistently map
to larger biases. Secondly, the bias must incorporate random-
ness, essential in preventing adversaries from immediately
deducing plaintexts from the observed biases.

To achieve this goal, we utilize the order-reserving encryp-
tion (ORE) [14] to generate the biases. ORE relies on a prob-
abilistic encryption scheme, mapping plaintexts into random
positions within a specified range, while ensuring that larger
plaintexts consistently map to larger ranges. This makes ORE
fulfill our requirements of both monotonicity and randomness.

By employing the ORE algorithm to a subfilter and the version
number of the subfilter’s corresponding record, we generate
a bias b. By appending b to the subfilter with length m, we
produce a rangefilter with a range spanning from b to m+ b.
Definition 2 (NEXUS’s rangefilter). A rangefilter is a secure
data structure that comprises a subfilter with a confidential
bias, providing data membership and ordering information.
NEXUS’s complete index. Building upon the rangefilter prim-
itive, we present the complete index named Merkle rangeFilter
Tree (MFT). Below we detail the construction and encrypted
search process using MFT.
e MFT construction. With a set of rangefilters for all index
keys, the client constructs MFT by placing these rangefilters at
the bottom layer of the structure as leaf nodes, then generating
other inner nodes by merging the ranges of child rangefilters
using the union operation (algorithm in Appendix A.2). No-
tably, although MFT uses the merged ranges for index traversal
instead of subfilter comparison (as in Figure 3), the union op-
erations on subfilters (performed as element-wise OR gate
computation on bits) remain essential, as they play a crucial
role in protecting query integrity (discuss in §4.3).
o MFT search. Next, we detail how MFT handles encrypted
point and range searches, which are two fundamental capabili-
ties for analytical queries [45, 52]. The principle is to utilize
the ranges within rangefilters, which preserve the numerical
ordering of records, for index traversal at the inner node level.
At the leaf node level, MFT conducts bitwise subfilter compar-
ison to precisely locate records by evaluating data membership.
Our methodology is outlined in Algorithm 1.

For point searches, MFT performs a series of range com-
parisons and subfilter comparisons. Specifically, among the
inner nodes, MFT performs inner comparisons to determine

Algorithm 1: MFT Encrypted Search

1 Function PointSearch (root, key, opt=point) do
2 if isLeaf (root) then

V Subfilter comparison at the bottom layer

3 L if key.r ft = root.r ft then
4 | return root

V Use rangefilter’s ranges to traverse the MFT
5 if key.rng € root.left.rng then
6 | return PointSearch (root.left, key, point)
7 if key.rng € root.right.rng then
8 | return PointSearch (root.right, key, point)

V Left boundary is non-existent (Fig 4’s case)
9 if opt = left then

V Find smallest node larger than boundary

10 root <— root.right

1 while lisLeaf (root) do
12 | root < root.left
13 return root

V Right boundary is non-existent
14 if opt = right then

V Find largest node smaller than boundary

15 > Similar to line 11~14
16 Function RangeSearch (root, [keyl, key2]) do

17 left < PointSearch (root, keyl, left)

18 right <~ PointSearch (root, key2, right)

19 | return [left,right] > Retrieve sorted leaf nodes
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Figure 4: An example of a non-existent range query in MFT.

if the range of the query parameter falls within the range of
the current inner node. Owing to the monotonicity of biases,
such comparison reveals the order between encrypted data
thus determining whether an inner node is on the search path
(line 5~8). Once the bottom layer is reached, MFT compares
each bit of the parameter’s subfilter with the corresponding bit
in a leaf node (line 2~4). The requested record is only found
when all bits match. This is because each subfilter exclusively
corresponds to one record (Definition 1).

For range queries, MFT conducts two point searches on the
left and right boundary respectively, and outputs all leaf nodes
that lie between the two searched leaf nodes (line 16~19).

Notably, MFT even tackles non-existent key search (line

9~15) owing to its range design. Consider a range query
example shown in Figure 4, after top-down comparisons, MFT
reaches N, (because K;’s range is within N, s range), but MFT
finds that none of N,’s child nodes’ ranges fully contain K;’s
range. Thus, MFT learns that K is a non-existent key (owing
to the monotonicity property), retrieves the smallest data larger
than the left boundary, and confirms Njg as the searched leaf
node. Similarly, if the right boundary is non-existent, MFT
searches the largest data smaller than the right boundary. In
Figure 4’s case, the right boundary K, is existent because
MFT conducts subfilter comparisons at leaf nodes and finds
that Ni,’s subfilter exactly matches K>’s. Finally, all records
situated between Njg and N, (i.e., R3~Rj5) are returned.
o MFT update. The update process in MFT involves locating
the leaf node containing the target record using the search
procedure described above. Once the leaf node is found, the
corresponding record is updated accordingly. MFT handles
node splitting and merging same as a traditional B*-tree.

4.3. MFT-driven Query Workflow

So far, we have assumed that all EDBs follow our protocol in
an honest-but-curious manner. Next, we show how to defend
against a malicious attacker that can deviate from NEXUS’s
protocol through query authentication. Then we demonstrate
how the authenticated data can be securely aggregated.
Query authentication. NEXUS enforces two authentication
rules to detect manipulation attempts, including modifications,
replays, and dropping (deletions) of query results.

e Rule 1: freshness check. This rule serves to detect any
modification or replay attempts of query results. NEXUS em-

ploys MAC:s to check the freshness of query results. The MAC
must satisfy two conditions: (1) a MAC tag is only valid for
the latest update to prevent replay attacks, and (2) the MAC
tag does not apply to other record’s rangefilters. Thus, we com-
pute the MAC over both the rangefilter and the version of the
record. For each record update, the client additionally sends a
MAC for that record, which is implemented by appending a
256-bit tag to the tail of the rangefilter.

For verification purpose, multiple parties store their MAC
keys in the proxy. Whenever a record is updated, a client
synchronizes the latest version of that record with the proxy;
the version is never revealed to any EDBs. All clients within a
party share an identical MAC key as they mutually trust each
other. After receiving query results, the proxy recomputes the
MAC and verifies the last 256 bits (MACs) in each rangefilter.
e Rule 2: completeness check. This rule serves to detect
drops and deletions of query results by ensuring that the results
align with the specified range and that the recomputed MFT
root matches the original root. Upon receiving a range query,
the EDB first searches for records within the specified range
(r; and r,). It then generates a proof that includes a node’s
rangefilter to the immediate left of the lower-bound (R;) and
another rangefilter to the immediate right of the upper-bound
(R,) of the searched records. Additionally, the EDB retrieves
the rangefilters of all left sibling nodes in the left search path
and the rangefilters of all right sibling nodes in the right search
path of the query.

Upon receiving the proof, the proxy verifies it through two
aspects. Firstly, it checks that the range of R; is smaller than
the left boundary, i.e., R;.range < r;.range, and it also verifies
that R,.range > r,.range. Secondly, the proxy recomputes
the MFT root in a Merkle-tree fashion using the retrieved
rangefilters of all query results and their siblings on the search
paths. It then compares the recomputed rangefilter with the
MFT root stored in the proxy, which was pre-stored by the
client and synchronized for each update. The completeness of
results is guaranteed only if two rangefilters are equal.

Figure 4 shows a completeness check example. Given a
range query that searches for records in [Kj, K], it returns
three leaf nodes {Njg, Ni1, Ni»}. For authentication, MFT
returns Ng~Nj3: Ny and Ni3 are returned to prove that no
records in range [K, Njo) and (Ny2, K>] are omitted. Two ad-
ditional sibling nodes (N4 and N7) in the search paths are also
returned to recompute the root’s rangefilter for comparison.

In sum, Rule 1 provides protection against modifications or
replays, and Rule 2 detects any potential drops in query results.
Together, they complete the query authentication protocol. We
omit the discussion of point query authentication as it follows
the same authentication protocol as range queries.
MFT-driven data aggregation. After authentication, NEXUS
aggregates the homomorphic encrypted analytical results from
multiple collaborative EDBs and generates decryptable results
for the client. However, a security challenge arises as clients
cannot directly share HE keys for decryption, even if they are



mutually trusted. This is because, if a party withdraws from the
joint query system (e.g., an enterprise exits the cooperation),
the remaining parties cannot continue to decrypt the departing
party’s data. If the HE key is shared, the departing party must
re-encrypt all its data using a new key and update its EDB
accordingly, which is prohibitively expensive.

To remedy this issue, we propose an MFT-driven Secure
Data Aggregation (SDA) protocol that securely transforms
joint analytical results encrypted by multi-keys into decrypt-
able results for clients, without compromising the confiden-
tiality of HE data. SDA leverages a key weapon known as
key switch [22], a homomorphic algorithm that enables the
conversion of the encryption key of HE data to a new key
without decrypting it. The key switch (KS), denoted by KS =
(Enc, Switch), has the following syntax:
® KS.Enc(S,S’) — tkn. Enc encrypts key S using a new key
S" and outputs a token tkn. tkn takes the form of (a*, A*) =
(@, d-S' +S+te mod q), d is a random parameter, other
variants are modular parameters in HE.
® KS.Switch(ctx,tkn) — ctx’. By using rkn, Switch converts the
encryption key of ctx from S to §’ and outputs a new ciphertext
netx=(—a-a*, A—a-A").

However, relying solely on the KS is insufficient because
there is no locality information on where to obtain the tokens
required for switching. Fortunately, we can combine the power
of MFT with KS to effectively locate query-relevant parties
for obtaining the tokens and then aggregate HE data.

SDA operates through three steps. First, NEXUS searches
the parameters on MFTs stored in the proxy to locate relevant
EDBs that contain matching data. This step generates a list
of parties P; that owns the relevant EDBs. Second, the proxy
signs P; and returns it to the client, who then verifies the
signature and sends a set of one-time keys S; to each party.
Upon receiving S;, each party runs KS.Enc(S, S;) to generate a
secret token tkn; based on S; and its encryption key S. Each
party then sends tkn; to the proxy. Last, the proxy transforms
each retrieved record from party P; (i.e., ctx;) with the party’s
token (i.e., tkn;) using KS.Switch(ctx;, tkn;). The proxy then
aggregates the key-switched data based on common attributes
and returns the results to the client. The client can then use S;
to securely decrypt the HE-encrypted results.

4.4. Security and Performance Analysis

Formally, the following theorem captures NEXUS’s security:
Theorem 1. Given that the cryptographic hash functions
are mathematically irreversible, and assuming that the ORE
algorithm, homomorphic key switch algorithm, and MAC algo-
rithm are all semantically secure, and provided that the under-
lying storage is maliciously secure, the NEXUS protocol for
collaborative analytical queries is mathematically irreversible
with integrity, in the presence of a malicious adversary 2.
The above theorem is established through the following
two lemmas: Lemma 1 demonstrates the infeasibility of an
adversary 2l to reverse-engineer NEXUS’s index keys (i.e.,

rangefilters) used for searching; Lemma 2 proves the effective
detection of any integrity breaches conducted by 2.
Lemma 1 (Confidentiality of rangefilter). Given a rangefilter
rf and a set of cryptographic hash functions H, it is computa-
tionally infeasible to find any input x such that H(x) = rf.
Proof. The proof is given in Appendix §A.3.
Lemma 2 (Integrity of query results). Any manipulation
attempts to EDBs’ query results, including modifications, re-
plays, dropping, and deletions can be detected in NEXUS.
Proof. The proof is given in Appendix §A.3.
High performance. NEXUS achieves the ideal logarithmic
search complexity as illustrated below. The time complexity
of traversing inner nodes using range comparison is & (logn),
where 7 is the total number of records; the time complexity
of subfilter comparison at leaf nodes is & (m), where m is the
length of subfilters. Consequently, the overall time complexity
is O(logn)+0(m). As m < n, the resulting complexity of
NEXUS’s encrypted search is logarithmic to the database size.

5. Implementation

We implemented NEXUS with 5021 lines of C++ code on
CryptDB [51], a modular framework for evaluating EDBs.
For NEXUS’s protocol messages, we utilized asynchronous
RPC calls [72], and these messages were safeguarded via
AES [36]. We modified CryptDB’s proxy to spawn two new
threads: one thread calls MFT_dispatch () to route queries
to execute in query-dependent databases; the other thread
verifies query results by calling MFT_verify (), and executes
the SDA protocol by calling MFT_aggregate ().

Case study. We built two EDBs on MySQL [45] and Mon-
goDB’s NoSQL KV backend WiredTiger [16]. In both cases,
we replaced MySQL’s default BT -tree and WiredTiger’s de-
fault B-tree with NEXUS’s MFT. This replacement is facili-
tated by NEXUS’s unclustered design that separates the design
of indexes from the underlying storage (§3.1). Notably, since
WiredTiger maintains an LRU cache for the entire B-tree
traversal path including both inner and leaf nodes’ pages, to
comply with such caching semantics, NEXUS also persisted
the traversed MFT pages so that WiredTiger can cache them.
Optimization. Firstly, we adopted a lazy update strategy to
improve query performance for deletions. Concretely, MFT
refrains from executing an immediate update for each deletion,
which involves costly root filter recomputation. Instead, MFT
periodically updates itself at regular intervals for batches of
deletions. This does not harm the correctness as we stored a
supplementary bloom filter for deleted records (DBF). Each
query will verify the presence of queried records in the DBF
to ascertain whether they have been deleted. Secondly, we em-
ployed homomorphic batching [19] for key switching to maxi-
mize query throughput. Thirdly, we fine-tuned WiredTiger’s
LRU cache size for a higher cache hit ratio. Lastly, we loss-
lessly compressed MFTs by storing only the subscripts of "1"
bits in rangefilters, to preserve larger working sets of MFTs in
memory and reduce time-consuming disk I/O operations.
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Figure 5: Normalized end-to-end latency of running TPC-C on all baselines in SQL instances. All systems’ latency results are normalized to
vanilla insecure MySQL (in green dashed line). Values on each red bar indicate NEXUS’s average latency.

6. Evaluation

Testbed. All experiments were done on our cluster machines,
each equipped with a 2.60GHz Intel E5-2690 V3 CPU, 64GB
memory, 40Gbps NIC, and 24 cores. Each node, including
clients, databases, and the proxy, was executed in a docker
container. The average ping latency between the nodes was
set at 0.17ms with the aid of Linux traffic control [6].
Baseline. We implemented a SQL instance using MySQL [45]
and a NoSQL instance using WiredTiger [16]. We compared
NEXUS with three baselines: CryptDB [51], HElibDB [5],
and vanilla insecure databases (i.e., MySQL and WiredTiger).
CryptDB and HEIibDB are imperative HE databases. CryptDB
cryptographically enables point queries with deterministic en-
cryption (DET) [11] and range queries with order-preserving
encryption (OPE) [4], with separate indexes. HEIibDB utilizes
Fermat’s Little Theorem [21] to directly evaluate the equiva-
lence of HE data but requires scanning the entire database.

For an apple-to-apple comparison, we expanded upon base-

lines in three ways. Firstly, we upgraded CryptDB’s HE al-
gorithm from partial HE to fully HE BGV [22] to enable
arbitrary computation on ciphertexts as in NEXUS. Secondly,
all baselines were extensively implemented on both SQL and
NoSQL instances. Thirdly, we integrated NEXUS’s core proxy
components into CryptDB and HEIibDB to support multi-party
collaborative analytics as in NEXUS.
Workload and default setting. Since there is no standard-
ized benchmark for evaluating collaborative SQL analytics on
EDBs, for a fair comparison, we evaluated workloads from
recent EDBs [51, 3, 76, 82], which includes the TPC-C bench-
mark [41] for relational databases and a customized workload
for NoSQL key-value stores.

Specifically, we followed the multi-party deployment ap-
proach [75] by first partitioning TPC-C randomly and uni-
formly across databases based on warehouse ID, and assigned
clients to parties based on their associated warehouse IDs. For
customized NoSQL workloads, we simulated governmental
statistics and medical workloads (as described in §2.2) by
generating 20 fixed-size keys (8 bytes) and values (64 bytes)
in a manner similar to [80], and horizontally partitioned all
key-value pairs across databases as in TPC-C.

To match the setup of existing multi-party query sys-
tems [75, 17], we equipped each party with two databases.
Unless for scalability experiments, we simulated 10 parties.
For the homomorphic setting, we employed HEIlib’s BGV im-
plementation [5], using a plaintext prime modulus of 29 and

Distributed query latency (in milliseconds)

Systems (in SQL instance) NEXUS CryptDB
Query type “PQ T RQTTPQ RQ”
P1 (client): Parameter transform 0.11 0.13 0.19 0.32
P2 (proxy): Query dispatch 0.12 0.18 0.06 0.1
P3 (database): Data lookup de-4  le-3 2e-4 le-3
P4 (proxy): Query authenticate le-3 1e-3 N/S N/S
PS (proxy): Key switch & aggregate 0.17 021 0.12 0.24
P6 (client): Result decrypt 0.15 035 021 0.52
End-to-end (Y. P) 055 087 058 1.18

Table 2: Breakdown and comparison of query latency. PQ and RQ
mean point and range query respectively. P1 (client) means the first
phase of parameter transformation occurs at the client, etc.

a ciphertext modulus of 1009 to compress ciphertexts with
an expansion coefficient of 4. We ran each experiment for
60 seconds and collected the result in the middle 30s (i.e.,
15s~45s) to avoid the disturbance caused by system start-up
and cool-down. We focus on the following questions:

§6.1 How efficient is NEXUS compared to baselines?

§6.2 Can NEXUS scale to more parties and larger datasets?
§6.3 Does NEXUS exhibit extensibility?

§6.4 What are the lessons we learned?

6.1. End-to-end Performance

We first evaluated the performance of NEXUS and baselines in
a fault-free scenario where no integrity breaches occurred in
the query results. The results presented in Figure 5 indicate
that NEXUS demonstrated a lower latency (between 5.4x to
16.6x, excluding insert queries) compared to HElibDB. This is
attributed to the use of MFT index by NEXUS, which provides
logarithmic search complexity as opposed to HEIibDB that
requires linear scans to search for equivalent encrypted data,
leading to reduced latency for all read queries.

Priority: read query latency. HElibDB achieved 3x to 3.3x
lower insert latency compared to NEXUS and CryptDB. This
is because HEIibDB simply appends new records to its storage
by trading off the linear search latency on read queries. In
contrast, NEXUS and CryptDB both maintain sorted records
in storage, leading to higher insert latency by first looking up
an insert position via indexing before writing a new record to
that position in the storage. Luckily, it is worth noting that
in the joint query scenario of NEXUS, read could occur more
frequently (refer to §2.2), and hence, we deem it acceptable to
make such a performance trade-off, which has been a common
practice in existing insecure databases [45, 16].

General capabilities with breakdown. On the TPC-C work-
load depicted in Figure 5, NEXUS achieved 6% to 28% lower
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latency. For the representative queries (§2.2) running on the
NoSQL workload with varying numbers of key-value pairs,
NEXUS had 32% to 55% lower latency shown in Figure 8(a).
Q2 exhibited higher latency than Q1 because Q2 involved
range searches and a sum with aggregates while Q1 simply
counted the total number. Both NEXUS and CryptDB sup-
ported point and range queries with logarithmic search com-
plexity; interestingly, NEXUS still outperformed CryptDB in
terms of both query latency (verified in Table 2) and through-
put (shown in Figure 7), despite sharing the same complexity.

Table 2 shows the performance breakdown. CryptDB’s
primary overhead was observed to be in P1 and P6 for cryp-
tographic operations. In contrast, NEXUS incurred additional
latency in P2 for subfilter comparison at leaf nodes (the time is
covered by index traversal, analyzed in §4.4), and P4 for query
authentication. Nonetheless, the cryptographic overhead of
CryptDB surpassed that of NEXUS, ultimately leading to the
overall performance advantages exhibited by NEXUS.

We then evaluated the latency distribution by running range
queries that accessed 20%~80% records on all baselines, us-
ing various workloads. Figure 6 shows that NEXUS reduced
the latency for all workloads in comparison to CryptDB. The
latency distribution was affected by the length of queries,
where longer query ranges led to higher latency of lookup,
key switch, aggregation, and decryption. Notably, insecure
databases do not require key switch and decryption. HElibDB
was not evaluated as it does not support range queries.
Performance on mixed queries. Figure 7 shows that NEXUS
achieved 1.31x to 1.88x higher throughput over CryptDB on
the customized workload with mixed point and range queries.
This improvement is mainly because CryptDB’s design ne-
cessitates frequent shuffling between the point search index
and range search index, whereas NEXUS uniformly tackled
both query types through a single MFT index abstraction. The
throughput gain is also bolstered by our homomorphic imple-
mentation that employs the batching strategy (§5).
Robustness under attacks. Next, to assess the robustness of
NEXUS, we simulated attacks by randomly manipulating half
of the queries running on the KV workload, involving either
modifying, replaying, or dropping (deleting) query results.
The stable effective throughput in Figure 8(b) demonstrates
NEXUS’s 100% detection rate, whereas other baselines with
no defenses had significant performance drops. This is due
to NEXUS’s two-step integrity check (§4.3): the MAC check
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detects any modifications or replays on versioned data; the
MFT check detects any drops or deletions of query results.
In sum, NEXUS presents a robust solution for enabling
general queries among multiple collaborative parties, with
low latency and high throughput. NEXUS favors read query
performance and tolerates moderate write performance down-
grades. NEXUS is most suitable for applications that prioritize
read performance and require end-to-end security, which is
common in collaborative scenarios such as financial statistics
across banks [79] and medical studies across hospitals [42].

6.2. Scalability

Scale to larger databases. We evaluated baselines with vary-
ing database sizes on the KV workload. As depicted in Fig-
ure 9, NEXUS’s latency scales logarithmically, matching our
complexity analysis in §4.4. For point queries, both NEXUS
and CryptDB incurred moderate overhead when compared
to the insecure WiredTiger, while HElibDB had significantly
higher latency due to its linear scanning approach. For range
queries, NEXUS achieved a greater performance advantage
than baselines compared to point queries because NEXUS’s
membership-based indexing is more efficient than prior crypto-
graphic approaches (as also evident in Table 2). HElibDB was
not evaluated because it is designed solely for point searches.
Scale to more parties. We varied the number of collaborative
parties in NEXUS, ranging from 2 to 10, which is consid-
ered sufficient for collaborative analytics in real-world sce-
narios [75]. Figure 10 depicts NEXUS’s throughput-latency
(99th% tail latency) performance on the KV workload. As
the number of parties increased, both NEXUS’s throughput
and latency increased. Note that the latency gap between
different numbers of parties was more pronounced in range
queries compared to point queries, because the range queries
typically searched, verified, and aggregated more data, leading
to increased query processing time.
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6.3. Extensibility Study

One of the fundamental capabilities of NEXUS lies in its use
of the MFT secure index to dispatch general queries to ex-
ecute in query-dependent HE databases. This query rout-
ing capability is essential for a secure query system and en-
ables NEXUS to extend its functionality to work seamlessly
with TEE databases [3, 64, 53]: NEXUS can be extended
to allow collaborative parties to outsource their data to TEE
databases and perform joint queries alongside other parties’
HE databases. Concretely, in this study, the clients initialized
MFTs for both HE and TEE databases and uploaded MFTs to
the proxy for query dispatching. When dealing with queries in
TEE databases, the workflow remained unchanged, involving
parameter decryption within TEE databases, searching plain-
texts in a TEE-shielding B -tree, and ultimately verifying
plaintext results within the TEE (§2.1).

To validate this extensibility, we conducted experiments
by varying the proportion of HE and TEE databases in our
default ten-party setting and tested the query latency. We ran
TEE databases using the open-sourced Azure EdgelessDB [3],
which equips an TEE-shielded B*-tree with optimized index
performance. Figure 11 confirms the feasibility of running a
combination of HE and TEE databases for collaborative query
analytics. Furthermore, the comparison between Figure 11(a)
and Figure 11(b) highlights NEXUS’s primary advantage in ef-
ficiently supporting range queries when compared to baselines,
corroborating the findings from previous experiments.

6.4. Lessons Learned

Cryptographic hash-based security. Cryptographic hash
has been widely adopted in security-critical applications such
as password managers [9, 10] and phishing detectors [38],
showcasing its effectiveness in protecting sensitive informa-
tion. NEXUS builds the MFT secure index using cryptographic
hash functions like SHA-256 and inherits the irreversible se-
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curity [57], in the sense that the encrypted data cannot be
reversed to plaintexts even with the knowledge of the hash
functions. This design choice enables practical performance
and rich query capabilities with query integrity, all achieved
through MFT. Unlike previous research (e.g., CryptDB and
HEIlibDB) that prioritizes a stronger confidentiality guaran-
tee of IND-CPA [2], which often sacrifices query capability
or efficiency and overlooks query integrity, the NEXUS de-
sign strikes a balance between practicality and security. As
such, it is well-suited to connect EDBs for collaborative query
analytics [27, 42, 39, 79] in a malicious threat environment.

Dismissing an alternative design. One may think of using
solely monotonic bias with ORE for building an encrypted
index, which poses two problems. Firstly, this approach limits
query capability to range queries, akin to CryptDB’s OPE
solution. Secondly, it fails to support query authentication for
detecting integrity breaches. In contrast, NEXUS enables both
data confidentiality and query integrity in a unified manner.

Limitations. NEXUS has two limitations. Firstly, its security
is not perfect as it does not hide side-channel information re-
lated to the specific type of computation performed by queries,
such as equality comparisons and sorting operations. This
is an inherent issue in most encrypted databases that aim to
achieve practicality without resorting to expensive oblivious
algorithms [53, 3, 51]. Secondly, NEXUS’s MFT secure index
is built on a single searchable attribute, making it unsuitable
for databases that search over multiple attributes such as graph
databases [7, 31]. For these databases, while NEXUS is capa-
ble of handling disjunctive queries by searching each attribute
independently, NEXUS cannot handle conjunctive queries with-
out integrating MFT with multidimensional indexes such as
k-d tree [81], which is an interesting direction for future work.

7. Conclusion

We present NEXUS, the first secure query system that supports
general collaborative SQL analytics on EDBs, providing both
data confidentiality and query integrity guarantees. NEXUS
leverages the new Merkle rangeFilter Tree (MFT) secure index
to efficiently dispatch encrypted queries to query-dependent
EDBs, authenticate, and aggregate query results. Extensive
results on both SQL and NoSQL instances shown that NEXUS
is secure, highly efficient, scalable, and extensible compared
to baselines. NEXUS is open-sourced and its code is released
on github.com/2024asplosd405/Nexus.


github.com/2024asplos405/Nexus

References

(1]
[2]

[3]

[4]

[5

=

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

Jeddak project. https://github.com/bytedance-jeddak/jeddak.

Web resource: https://en.wikipedia.org/wiki/Ciphertext indistinguisha-
bility, 1997.

Edgeless Systems GmbH. 2022. EdgelessDB Official Website.
Retrieved March 1, 2022. https://www.edgeless.systems/
products/edgelessdb.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong
Xu. Order preserving encryption for numeric data. In Proceedings of
the 2004 ACM SIGMOD international conference on Management of
data, pages 563-574, 2004.

Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi, and Trin-
abh Gupta. Pantheon: Private retrieval from public key-value store.
Proceedings of the VLDB Endowment, 16(4):643-656, 2022.

Werner Almesberger et al. Linux network traffic con-
trol—implementation overview, 1999.

Renzo Angles and Claudio Gutierrez. Survey of graph database models.
ACM Computing Surveys (CSUR), 40(1):1-39, 2008.

David W Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt
Nielsen, Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright.
From keys to databases—real-world applications of secure multi-party
computation. The Computer Journal, 61(12):1749-1771, 2018.

Sareh Assiri and Bertrand Cambou. Homomorphic password manager
using multiple-hash with puf. In Advances in Information and Com-
munication: Proceedings of the 2021 Future of Information and Com-
munication Conference (FICC), Volume 1, pages 772—792. Springer,
2021.

Andrey Belenko and Dmitry Sklyarov. “secure password managers’
and “military-grade encryption” on smartphones: Oh, really? Blackhat
Europe, page 56, 2012.

Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart.
Deterministic encryption: Definitional equivalences and constructions
without random oracles. In Annual International Cryptology Confer-
ence, pages 360-378. Springer, 2008.

Carole Bernard, Ludger Riischendorf, Steven Vanduffel, and Jing Yao.
How robust is the value-at-risk of credit risk portfolios? The European
Journal of Finance, 23(6):507-534, 2017.

Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422-426, 1970.

Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry,
and Joe Zimmerman. Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation. In Advances in
Cryptology-EUROCRYPT 2015: 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 563—-594.
Springer, 2015.

Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Riidi-
ger Kapitza. Rollback and forking detection for trusted execution
environments using lightweight collective memory. In 2017 47th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 157-168. IEEE, 2017.

Rupali Chopade and Vinod Pachghare. Mongodb indexing for per-
formance improvement. In ICT Systems and Sustainability, pages
529-539. Springer, 2020.

Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion
Stoica. Dory: An encrypted search system with distributed trust. In
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), pages 1101-1119, 2020.

Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica.
Waldo: A private time-series database from function secret sharing. In
2022 IEEE Symposium on Security and Privacy (SP), pages 2450-2468.
IEEE, 2022.

Yarkin Dor6z, Gizem S Cetin, and Berk Sunar. On-the-fly homomor-
phic batching/unbatching. In International Conference on Financial
Cryptography and Data Security, pages 288-301. Springer, 2016.
Mohammad J Emami, Ali R Tavakoli, Hossein Alemzadeh, Farzad Ab-
dinejad, Gholamhossain Shahcheraghi, Mohammad A Erfani, Kamran
Mozafarian, Saeed Solooki, Sorena Rezazadeh, Ahmad Ensafdaran,
et al. Strategies in evaluation and management of bam earthquake
victims. Prehospital and disaster medicine, 20(5):327-330, 2005.
Fermat. Fermat’s last theorem. Web  resource:
https://en.wikipedia.org/wiki/Fermat27sLastTheorem, 1997.

Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P Smart. Ring
switching in bgv-style homomorphic encryption. In International
Conference on Security and Cryptography for Networks, pages 19-37.
Springer, 2012.

>

12

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

Krzysztof Goczylla and Janusz Cielatkowski. Optimal routing in a
transportation network. European Journal of Operational Research,
87(2):214-222, 1995.

Oded Goldreich. Foundations of cryptography: Volume 1, Basic tools.
2001.

Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input
secure hash functions. In Theory of Cryptography Conference, pages
182-200. Springer, 2011.

Paul Grubbs. On deploying property-preserving encryption. Real
World Cryptography, 2016.

CodeBlue: Sensor networks for medical
http://www.eecs.harvard.edu/mdw/ proj/codeblue/.

James L Hieronymus. Ascii phonetic symbols for the world’s lan-
guages: Worldbet. Journal of the International Phonetic Association,
23:72,1993.

Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison
operations for bgv and bfv. Proceedings on Privacy Enhancing Tech-
nologies, 2021(3):246-264, 2021.

Scott R. Intel. Sgx 2.0 (scalable sgx).

Borislav Iordanov. Hypergraphdb: a generalized graph database. In
International conference on web-age information management, pages
25-36. Springer, 2010.

KS Jaiswal, David J Wald, Paul S Earle, Keith A Porter, and Mike
Hearne. Earthquake casualty models within the usgs prompt assessment
of global earthquakes for response (pager) system. In Human casualties
in earthquakes: progress in modelling and mitigation, pages 83-94.
Springer, 2010.

Shivam Kalra, Junfeng Wen, Jesse C Cresswell, Maksims Volkovs, and
Hamid R Tizhoosh. Proxyfl: decentralized federated learning through
proxy model sharing. arXiv preprint arXiv:2111.11343,2021.

Shivam Kalra, Junfeng Wen, Jesse C Cresswell, Maksims Volkovs, and
HR Tizhoosh. Decentralized federated learning through proxy model
sharing. Nature communications, 14(1):2899, 2023.

Seny Kamara and Charalampos Papamanthou. Parallel and dynamic
searchable symmetric encryption. In Financial Cryptography and Data
Security: 17th International Conference, FC 2013, Okinawa, Japan,
April 1-5, 2013, Revised Selected Papers 17, pages 258-274. Springer,
2013.

Emilia Kdsper and Peter Schwabe. Faster and timing-attack resistant
aes-gcm. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 1-17. Springer, 2009.

Sara Kathleen Geale. The ethics of disaster management. Disaster
Prevention and Management: an international journal, 21(4):445-462,
2012.

Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. Phishing detec-
tion: a literature survey. IEEE Communications Surveys & Tutorials,
15(4):2091-2121, 2013.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta,
Mark Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-
party computation meets machine learning. Advances in Neural Infor-
mation Processing Systems, 34:4961-4973, 2021.

Yitshak Kreiss, Ofer Merin, Kobi Peleg, Gad Levy, Shlomo Vinker,
Ram Sagi, Avi Abargel, Carmi Bartal, Guy Lin, Ariel Bar, et al. Early
disaster response in haiti: the israeli field hospital experience, 2010.

Scott T Leutenegger and Daniel Dias. A modeling study of the tpc-c
benchmark. ACM Sigmod Record, 22(2):22-31, 1993.

Dong Li, Xiaofeng Liao, Tao Xiang, Jiahui Wu, and Junging Le.
Privacy-preserving self-serviced medical diagnosis scheme based on
secure multi-party computation. Computers & Security, 90:101701,
2020.

Murali Mani, Kinnari Shah, and Manikanta Gunda. Enabling secure
database as a service using fully homomorphic encryption: Challenges
and opportunities. arXiv preprint arXiv:1302.2654, 2013.

Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus
Huber, and Edgar Weippl. Dark clouds on the horizon: Using cloud
storage as attack vector and online slack space. In 20th USENIX
Security Symposium (USENIX Security 11),2011.

AB MySQL. Mysql, 2001.

IBM Homomorphic Encryption News. Top brazilian bank pilots pri-
vacy encryption quantum computers can’t break.

Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal
Malkin, Seung Geol Choi, Wesley George, Angelos Keromytis, and
Steve Bellovin. Blind seer: A scalable private dbms. In 20/4 IEEE
Symposium on Security and Privacy, pages 359-374. IEEE, 2014.

care, 2008.


 https://www.edgeless.systems/products/edgelessdb
 https://www.edgeless.systems/products/edgelessdb

(48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Zeshun Peng, Yanfeng Zhang, Qian Xu, Haixu Liu, Yuxiao Gao, Xiao-
hua Li, and Ge Yu. Neuchain: a fast permissioned blockchain system
with deterministic ordering. Proceedings of the VLDB Endowment,
15(11):2585-2598, 2022.

Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: A strongly
encrypted database system. IACR Cryptol. ePrint Arch., 2016:591,
2016.

Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada
Popa, and Joseph M Hellerstein. Senate: a {Maliciously-
Secure } {MPC} platform for collaborative analytics. In 30th USENIX
Security Symposium (USENIX Security 21), pages 2129-2146, 2021.
Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. Cryptdb: protecting confidentiality with encrypted
query processing. In Proceedings of the twenty-third ACM symposium
on operating systems principles, pages 85-100, 2011.

Behandelt PostgreSQL. Postgresql. Web resource: http://www. Post-
greSQL. org/about, 1996.

Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A
secure database using sgx. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 264-278. IEEE, 2018.

Lilian SC Pun-Cheng. An interactive web-based public transport
enquiry system with real-time optimal route computation. /[EEE Trans-
actions on Intelligent Transportation Systems, 13(2):983-988, 2012.
Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang, Tianxiang Shen,
Shixiong Zhao, Sen Wang, Gong Zhang, Li Chen, Man Ho Au, et al.
Bidl: A high-throughput, low-latency permissioned blockchain frame-
work for datacenter networks. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages 18-34, 2021.
Michael O Rabin. Probabilistic algorithms in finite fields. SIAM
Journal on Computing, 9(2):273-280, 1980.

Dian Rachmawati, JT Tarigan, and ABC Ginting. A comparative study
of message digest 5 (md5) and sha256 algorithm. In Journal of Physics:
Conference Series, volume 978, page 012116. IOP Publishing, 2018.
Addanki Purna Ramesh, AVN Tilak, and AM Prasad. An fpga based
high speed ieee-754 double precision floating point multiplier using
verilog. In 2013 International Conference on Emerging Trends in VLSI,
Embedded System, Nano Electronics and Telecommunication System
(ICEVENT), pages 1-5. IEEE, 2013.

Kalle Johannes Rose. The problem of regulating the easy way out—eu
money laundering regulation. Journal of Money Laundering Control,
22(4):666-677, 2019.

Mehdi Saeedi, Morteza Saheb Zamani, and Mehdi Sedighi. A library-
based synthesis methodology for reversible logic. Microelectron. J.,
41(4):185-194, April 2010.

Mario Schkolnick. Secondary index optimization. In Proceedings of
the 1975 ACM SIGMOD international conference on Management of
data, pages 186-192, 1975.

AMD Sev-Snp. Strengthening vm isolation with integrity protection
and more. White Paper, January, 53:1450-1465, 2020.

Tianxiang Shen, Jianyu Jiang, Yunpeng Jiang, Xusheng Chen, Ji Qi,
Shixiong Zhao, Fengwei Zhang, Xiapu Luo, and Heming Cui. Daenet:
Making strong anonymity scale in a fully decentralized network. /IEEE
Transactions on Dependable and Secure Computing, 2021.

Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. Building
enclave-native storage engines for practical encrypted databases. Pro-
ceedings of the VLDB Endowment, 14(6):1019-1032, 2021.

Ken’ichi Tanaka. The kobe earthquake: the system response. a disaster
report from japan. European Journal of Emergency Medicine, 3(4):263—
269, 1996.

Christine Tex, Martin Schiler, and Klemens Bohm. Towards mean-
ingful distance-preserving encryption. In Proceedings of the 30th
International Conference on Scientific and Statistical Database Man-
agement, pages 1-12, 2018.

Dwen-Ren Tsai, Allen Y Chang, Sheng-Chieh Chung, and You Sheng
Li. A proxy-based real-time protection mechanism for social net-
working sites. In 44th Annual 2010 IEEE International Carnahan
Conference on Security Technology, pages 30-34. IEEE, 2010.
Eugene Tsyrklevich and Bennet Yee. Dynamic detection and pre-
vention of race conditions in file accesses. In 12th USENIX Security
Symposium (USENIX Security 03), 2003.

Francisco Vazquez, Benjamin M Tabak, and Marcos Souto. A macro
stress test model of credit risk for the brazilian banking sector. Journal
of Financial Stability, 8(2):69-83, 2012.

Benjamin Vogel and Jean-Baptiste Maillart. National and international
anti-money laundering law: developing the architecture of criminal
Justice, regulation and data protection. Intersentia, 2020.

13

[71]

[72]

(73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

Miao Wang, Hangguan Shan, Rongxing Lu, Ran Zhang, Xuemin Shen,
and Fan Bai. Real-time path planning based on hybrid-vanet-enhanced
transportation system. IEEE Transactions on vehicular technology,
64(5):1664-1678, 2014.

Xingwei Wang, Hong Zhao, and Jiakeng Zhu. Grpc: A communica-
tion cooperation mechanism in distributed systems. ACM SIGOPS
Operating Systems Review, 27(3):75-86, 1993.

Yilei Wang and Ke Yi. Secure yannakakis: Join-aggregate queries over
private data. In Proceedings of the 2021 International Conference on
Management of Data, pages 1969-1981, 2021.

Zhiyong Wang, Ruijie Hu, Tao Yu, and Chunyong Chen. Design
and implementation of a database client blacklist mechanism. In
2019 International Conference on Computing, Communications and
Intelligence Systems (ICCCIS), pages 71-74. IEEE, 2019.

Pengfei Wu, Jianting Ning, Jiamin Shen, Hongbing Wang, and Ee-
Chien Chang. Hybrid trust multi-party computation with trusted exe-
cution environment.

Yu Xia, Xiangyao Yu, Matthew Butrovich, Andrew Pavlo, and Srinivas
Devadas. Litmus: Towards a practical database management system
with verifiable acid properties and transaction correctness. In Proceed-
ings of the 2022 International Conference on Management of Data,
Philadelphia, PA, USA, pages 12-17, 2022.

Liang Xiao, Dongjin Xu, Caixia Xie, Narayan B Mandayam, and
H Vincent Poor. Cloud storage defense against advanced persistent
threats: A prospect theoretic study. IEEE Journal on Selected Areas in
Communications, 35(3):534-544, 2017.

Tao Yang, Jinming Wang, Weijie Hao, Qiang Yang, and Wenhai Wang.
Hybrid cloud-edge collaborative data anomaly detection in industrial
sensor networks. arXiv preprint arXiv:2204.09942, 2022.

Statistics Canada. Zachary Zanussi. Privacy preserving technologies
part two: Introduction to homomorphic encryption.

Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. {XRP}:{In-Kernel} storage functions with {eBPF}.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 375-393, 2022.

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time
kd-tree construction on graphics hardware. ACM Transactions on
Graphics (TOG), 27(5):1-11, 2008.

Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and
Feifei Li. Veridb: An sgx-based verifiable database. In Proceedings
of the 2021 International Conference on Management of Data, pages
2182-2194, 2021.



A. Appendices
A.1. Background: Homomorphic Encryption

To avoid trusting one specific hardware vendor of trusted hard-
wares, some organizations are seeking a cryptographic root-
of-trust from homomorphic encryption (HE), and are willing
to pay for the deficiencies of using HE-based solutions, espe-
cially fully HE schemes like BGV [22]. BGV allows arbitrary
aggregation (e.g., sum, avg) on encrypted data (with noises)
without requiring a secret key for decryption, and the compu-
tation result can be fully revealed by the owner of the secret
key [22]. BGV uses key switch algorithm to reduce ciphertext’s
noises, which is leveraged by NEXUS to aggregate multi-party
data encrypted by distinct secret keys (§4.3).

A.2. MFT Construction Algorithm

Algorithm 2: MFT Construction

1 /*Initialize MFT on the client side, update MFT on the database
side.*/

2 Struct {

3 Rangefilter rft > Subfilter with confidential bias (Def 2)
4 Node parent > Parent node pointer
5 } MFTNode;

Function CreatelLeaf () do
V Initialize bottom-layer rangefilters

7 > Procedure in §4.2
| returnleaf]]
9 Function cCreateInner (Node;, Nodej) do
(inner.left, inner.right) < (Node;, Node;)
(Node;.parent, Node.parent) < inner
V ‘Union’ the child ranges for traversal
inner.rng <— Node;.rng UNodej.rng
V ‘OR’ the child subfilters for integrity §4.3
inner.r ft <— Node;.rft or Node;.r ft
| return inner
Function CreatMFTIndex () do
le[]« createLeaf(), in[l+ &, ptr + 0
while in.length > 2 do
n[l« @, ptr <0
while ptr < in.length do
if ptr = in.length — 1 then
n.insert (Createlnner (in[ptr],in[ptr-1].pn))
else
L n.insert (CreatelInner (in[ptr]in[ptr+1]))
ptr < ptr—+2
in<—n
| return root < CreateInner(in[0],in[l])

EN

> MFT Entry

A.3. Proof Sketch of Security

Lemma 1 (Confidentiality of rangefilter). Given a rangefilter
rf and a set of cryptographic hash functions H, it is computa-
tionally infeasible to find any input x such that H(x) = rf.
Proof. We prove this lemma from two aspects. Firstly, the
irreversibility of the subfilter in a rangefilter is a direct result of
the one-way property of cryptographic hash functions, which
ensures that a computationally-bounded adversary cannot re-
verse the plaintexts even with the knowledge of the set of
used hash functions [56, 24]. Secondly, the confidentiality of
the bias in a rangefilter is ensured by the randomness of the
semantically secure ORE, as the input version number is never
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revealed to an adversary 2 (§4.2). By combining these prop-
erties, 2l can, at most, derive the index key from the subfilter
using exhaustive search (because reverse-engineering a seman-
tically secure bias is more difficult than reverse-engineering a
irreversible subfilter). Therefore, it is computationally infeasi-
ble to find any input x such that H(x) = rf.

Lemma 2 (Integrity of query results). Any manipulation
attempts to EDBs’ query results, including modifications, re-
plays, dropping, and deletions can be detected in NEXUS.

Proof. We prove this lemma from two authentication rules
(§4.3). Firstly, let S be the set of search results, / and r be
the query range boundary, NEXUS’s alignment rule states that
max{x € S:x <1} ¢ S and min{x € S : x> r} ¢ S, ensur-
ing that no records within the range of query parameters are
omitted; also, any modification or drop in results would be
detected by failing to reconstruct the root rangefilter. Secondly,
let T = MAC(S,mid,v) be the MAC of S with the secret MFT
ID mid, version number v held by the non-colluded proxy, the
freshness rule ensures that any reply with a different 7 can
be detected. This directly inherits the security of the MAC
scheme. By combining the two rules, any modifications, drop-
ping, deletions, or replays conducted by 2( can be detected
with the help of MFT, completing the proof.

To sum, Lemma 1 proves that 2 is infeasible to reverse the
NEXUS’s index keys and Lemma 2 proves that any integrity
breaches conducted by 2l can be detected in NEXUS. Together
these complete the proof of Theorem 1.

A.4. NEXUS’s Storage Model

Recall that NEXUS operates under the assumption that the
underlying storage engine is secure. This security ensures
that an EDB server can consistently and reliably retrieve the
correct data version from the underlying storage by detect-
ing and preventing rollback and fork attacks. NEXUS relies
on the underlying storage to provide essential functionalities
for data retrieval. Specifically, we assume a table 7 with
n columns CL = {cy,c1,...,cy,—1 } and is indexed on the pri-
mary key cg (i.e., PK = ¢g). A record r can be depicted as
[E(k),E(v1),...,E(v,—1)] where k is the value for ¢yp. The
storage engine should provide the following API:
EqualGet(E(k)): Retrieve the row r from T given a key k.
RangeGet(E(ks),E(k.)): Retrieve all rows {r} from T whose
keys are between E(ky) and E(k,).

FullGet(): Retrieve all rows {r} from 7.

Put(r): Insert (or update) a row r to T if its key k is non-
existent (or existent).

Delete(E(k)): Delete the row r from T given a key k.

[ ]
A.5. Generality of NEXUS

Is NEXUS general? We illustrate NEXUS’s generality by dis-
cussing two NEXUS’s core components: MFT confidential
index and SDA protocol. First, MFT is general to database
types including both relational and NoSQL databases, because



we assume a widely-adopted unclustered architecture where in-
dex and other components (e.g., storage) are decoupled (§3.1)
and MFT only substitutes the original index; MFT is also gen-
eral to attribute types (integer, real value, and string): as MFT
so far works on the integer attribute, we can transform real
values into integers using IEEE 754 floating point number [58]
and transform string values using ASCII character [28] by en-
coding any length-/ ASCII string with integers [0, 27"/ — 1].
Second, SDA is general as well, because SDA uses the generic
MEFT for searching, and aggregates data with key switch, a
generic tool in common HE algorithms to reduce HE data’s
cumulative noises [22, 29].
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