
HoTEE: Bridging Heterogeneous Encrypted Databases via Secure and
Logarithmic-complexity Indexing (reviseV)

Anonymous Submission #xxx

Abstract
An Encrypted Database (EDB) utilizes either homomorphic
encryption (HE) or trusted execution environment (TEE) to
store, search, and process sensitive data on the public cloud.
Organizations choose HE or TEE by their distinct trust, and
it is highly desirable for them to share data and make queries
across EDBs. However, EDBs using HE and EDBs using TEE
are now isolated, because HE data does not share the same
usability as TEE data where data can be securely decrypted to
support general queries with logarithmic search complexity.

We propose HoTEE, the first system that can support gen-
eral queries to heterogeneous EDBs on both TEE and HE
data with logarithmic complexity. HoTEE features a new
Merkle rangeFilter Tree (MFT) abstraction, which extracts de-
terministic and order-preserving, two essential properties for
realizing general queries on ciphertexts, and embeds these
properties into a secure tree-based data structure that pro-
vides logarithmic search complexity, bypassing the inherent
generality and inefficiency problem caused by operation-
specific encryption schemes used by prior work. Moreover,
by searching onMFTs,HoTEE precisely locates and interacts
with query-dependent organizations to securely transform
and aggregate query results from heterogeneous EDBs. We
implementedHoTEE and applied it to two popular databases:
MySQL andWiredTiger. Evaluation shows thatHoTEE is the
only system that supports general queries on heterogeneous
EDBs, while achieving up to 93.8% lower latency and up to
15.2X higher throughput compared to baselines.

1 Introduction
The prosperity of cloud computing and confidential comput-
ing fosters the deployment of encrypted databases (EDB) on
the public cloud [3, 5, 37, 42]. An EDB instance (for short,
an EDB) is increasingly heterogeneous: typically, it simulta-
neously enables both homomorphic encryption (HE) and
trusted execution environment (TEE) to store, search, and
process sensitive data onHE hosts (i.e., nodes) and TEE nodes.
For example, a ByteDance’s Jeddak database instance [1] si-
multaneously enables Jeddak-TEE nodes to store and analyze
intra-company data and Jeddak-HE nodes to process highly
sensitive inter-company data. The Canadian government has
launched an EDB project using TEE nodes to store citizens’
statistics and developing HE nodes to link data dispersed
across public institutions [53].
The confidential benefit of EDB makes it particularly at-

tractive on creating a principled unified query system, to
be created in this paper, for multiple parties. Specifically,
those parties who collectively analyze sensitive data and use

Query (Q)

Machine Result from party i

TEE
...

TK's TEEDB
... ...

Dispatcher

Public Cloud

Party A
...

Party KParty B

Aggregator

TEE / HE node

Client from a party

Encrypted record

...

DB Host 1 (H1) DB Host 2 (H2) DB Host i (Hi)

 TikTok
(TK)

Amazon
(AM)

AM's HEDB

Per-party encryption key

Q Q

AM's HEDB

Proxy
Host

Figure 1. A principled unified query system proposed by HoTEE.

heterogeneous EDB (containing both HE and TEE nodes), as
depicted in Figure 1. Such a unified query system introduces
two unique benefits. First, it facilitates queries to search on
heterogeneous EDB nodes simultaneously, bridging the silos
between TEE and HE data. Second, it enables the aggregation
of queried results from heterogeneous EDB nodes owned by
multiple parties for collaborative analytics.
In order to realize the benefits, the unified system we

create in this paperwill require a principled index component
(for short, proxy), which should be able to efficiently dispatch
general queries (e.g., range queries) to execute in relevant
EDB nodes and aggregate all queried data for the clients.
The example in Figure ?? illustrates the unique benefits

of the unified query system: supposing TikTok and Amazon
both have an item table, TikTok stores the table in TEE nodes
(can be decrypted) and Amazon stores the table in HE nodes
(can never be decrypted), and they share data to collectively
make queries for price analytics. A TikTok salesman (i.e.,
client) can submit a heterogeneous query as in Figure ??,
which searches on both TikTok’s data in TEE nodes and
Amazon’s data in HE nodes. The heterogeneous query must
be dispatched by the proxy to execute in relevant EDB nodes
and the searched results should be aggregated by the proxy.
Unfortunately, building such a principled unified system

remains an open problem; the core difficulty lies in the princi-
pled index for dispatching queries across TEE and HE nodes.
Specifically, HE data does not share the same usability as TEE
data when data is flowing across different nodes, because
unlike TEE that can decrypt data and then search plaintexts
on a TEE-shielded B+-tree [3, 42], HE data is fundamentally
infeasible to be decrypted and searched.

1

Despite much academic and industrial effort in developing
EDBs, all existing EDBs (categorized into two lines of work)
are infeasible to be extended to create the principled index, as
they face a fundamental generality-efficiency dilemma iden-
tified in our paper. The first line of work (e.g., HElibDB [5],
FHEDB [31]) uses specific HE functions (e.g., FLT [5]) to eval-
uate only the equivalence of HE data by linearly scanning
the whole dataset, which makes this line of work unsuitable
for the goals of this paper, as it is neither general (lacking
support for range queries) nor efficient (given massive and
constantly growing amounts of data) on HE nodes. The other
line of work (e.g., CryptDB [37], Monomi [45]) supports log-
arithmic complexity equality and range queries on HE data
by using distinct encryption schemes (e.g., DET [10] and
OPE [4]) to support either type of search operation. How-
ever, this line of work inherits the limitations of inefficient
cryptographic computations and does not support dynamic
changing or migrating data across the same HE nodes or
TEE nodes.

Overall, all existing EDBs use special encryption schemes
to support specific search operations, which inevitably inher-
its the generality and inefficiency problems of using these
encryption schemes.
This paper presents HoTEE1, the first unified query sys-

tem that can support general queries on heterogeneous EDB
(i.e., simultaneously enabling HE and TEE nodes) from mul-
tiple parties with logarithmic search complexity. HoTEE
tackles the generality-efficiency dilemma via a new confi-
dential index abstraction calledMerkle rangeFilter Tree (MFT).
Our principled insight is that, instead of using operation-
specific encryption schemes, we extract deterministic and
order-preserving, two essential properties in these schemes
for realizing general queries on ciphertexts, to create a se-
cure and searchable data structure. With MFT, we ensure
ciphertexts in the index are deterministically encrypted and
order-preserved, and can be searched via a tree-based data
structure with logarithmic search complexity. Thus MFT by-
passes the inherent generality and inefficiency problem of
prior work that uses operation-specific encryption schemes.
Actually, realizing the confidential index of MFT is chal-

lenging, because searching on heterogeneous EDBs (contain-
ing HE data that cannot be decrypted, as shown in Figure ??)
without compromising confidentiality is difficult, let alone
simultaneously support general queries on heterogeneous
data with logarithmic complexity.
Our technical insight is that, the traditional bloom fil-

ter [11] intrinsically holds the confidential and deterministic
properties that we require to create a principled index: a
bloom filter deterministically checks the existence of data
objects by comparing each element in a filter while hiding
the plaintexts of all objects. However, a bloom filter is not
searchable, thus we break a traditional monolithic bloom

1HoTEE stands for Homomorphic-TEE heterogeneous query.

filter into subfilters, where each subfilter represents only one
data object. By stacking subfilters into a Merkle-tree style
recursive data structure, MFT executes equality queries by
traversing and comparing each subfilter node logarithmically
(§4.1). Furthermore, to support range queries, we propose
biased range to securely patch the order-preserving prop-
erty to subfilters, such that subfilters can preserve the same
numerical orders as their corresponding plaintexts (§4.2).

We implemented HoTEE on the CryptDB codebase [37], a
prevalent modular framework for evaluating distributed en-
crypted databases. We built two HE databases with HoTEE
by augmenting prominent databases: HoTEE-MySQL and
HoTEE-WiredTiger. MySQL [32] is the most widely used
SQL backend for encrypted databases; WiredTiger [13] is a
popular key-value store that is the default NoSQL backend
for MongoDB. We run HE databases with the open-source
TEE database Azure EdgelessDB [3] for heterogeneous query,
and we design a secure data aggregation protocol (SDA) to
cryptographically transform and aggregate searched multi-
party data from heterogeneous EDB nodes (§4.3). We com-
pared HoTEE with two famous HE databases CryptDB [37]
and HElibDB [5] using typical workloads (e.g., TPC-C [27])
evaluated in relevant systems [8, 37, 52]. Evaluation shows
that:
• Generality. HoTEE is the first unified query system that
supports general queries (equality, range, join, insert, update,
and delete) among heterogeneous HE and TEE nodes within
the same EDB instance (§5.1), while the first line of work
supports only equality queries; HoTEE achieved logarithmic
search complexity on all these queries, which is proved in
§4.1 and empirically evaluated in §5.2.
• Efficiency. Although CryptDB supports general queries,
HoTEE achieved up to 28% lower latency and 1.8X higher
throughput than CryptDB (§5.1). Although HElibDB sup-
ports dynamic changing data on HE nodes, which CryptDB
does not support, HoTEE achieved up to 93.8% lower latency
and 15.2X higher throughput than HElibDB (§5.1). Mean-
while, HoTEE is the first work to support multi-party joint
query on heterogeneous EDB containing both TEE and HE
nodes, compared to all baselines.
• Extensibility. HoTEE supports a SQL (MySQL) instance
consisting of both HE nodes and TEE nodes; and it supports
another NoSQL (WiredTiger) instance consisting of both HE
nodes and TEE nodes.
Our main contribution is MFT, a new confidential index

abstraction to enable general queries with logarithmic search
complexity in a unified EDB instance, containing both HE
and TEE nodes. A long-lasting open problem in the EDB
area is that, existing EDBs support only limited queries on
either TEE or HE, HoTEE efficiently bridges heterogeneous
EDB and is the first work that supports multi-party joint
query in each EDB instance. Our other contributions include

2

a secure data aggregation protocol, which is the first effec-
tive attempt to enable multi-party data aggregation in each
heterogeneous EDB, makingHoTEE unique to facilitate mul-
tiple parties with distinct trust within the same EDB instance
to securely share data (proven in §4.4) and make joint queries
in various mission-critical applications (e.g., medical diagno-
sis [26, 28], governmental data collection [9, 53]). HoTEE’s
source code is released on github.com/osdip281/HoTEE.

2 Background
2.1 Encrypted Databases on the Cloud
Organizations are rapidly moving their sensitive data to
cloud databases for scalability and rich query capabilities [1,
3, 53]. However, grave security concerns are hindering wide-
scale adoption, particularly the need to maintain confiden-
tiality against adversaries (e.g., privileged insiders and attack-
ers that compromise database services) and detect integrity
breaches in queries [35, 42, 46]. Two categories of research
have emerged to address these concerns, as shown in Table 1.

The first category relies on Trusted Execution Environment

(TEE), notably Intel SGX [14], which provides a secure area
that ensures data confidentiality and computation integrity
in it [39]. Typically, TEE databases [3, 39, 42, 42] utilize an off-
the-shelf B+-tree to perform searches on plaintexts decrypted
within the TEE, enabling both point and range queries with
logarithmic search complexity.
The second category uses homomorphic encryption (HE)

for arbitrary and recoverable computation on encrypted
data, particularly through fully HE algorithms like BGV [19].
To improve the searchability of HE data, CryptDB and its
variants [36, 37, 45] use operation-specific encryption algo-
rithms to recursively encrypt a data item, allowing for point
searches with DET [10] and range searches with OPE [4].
Arx [36] employs Garbled Circuit for data comparison and
search. HElibDB [5] uses FLT [18] to perform direct searches
on HE data, albeit only supporting point searches via linear
scanning of the entire dataset. While these techniques ensure
IND-CPA [2], a strong security guarantee, they inevitably
inherit the deficiency and functionality issues of specific
cryptographic tools and also neglect query integrity.

Despite the two lines of work, many research efforts have
been put on supporting multi-party joint queries on en-
crypted databases. HybrTC [51] is designed to enable ver-
ifiable select-and-join queries on TEE databases owned by
multiple parties. Meanwhile, Dory [16] leverages multiple
trust domains to establish an encrypted file store that crypto-
graphically conceals database access patterns. These systems
target either specific database types or oblivious database
access, thus have an orthogonal goal with HoTEE.

2.2 Use Cases
Our motivation is to connect diverse encrypted databases
(EDB), such that a client can submit distributed queries to

System Data Query Multi Point Range
Confidentiality Integrity Party Search Search

MySQL [32] ✗ ✗ ✓ O(logn) O(logn)
EnclaveDB [39] Hardware ✓ ✗ O(logn) O(logn)
EdgelessDB [3] Hardware ✓ ✗ O(logn) O(logn)
HybrTC [51] Hardware ✓ ✓ O(n) n/a .
CryptDB [37] IND-CPA◦ ✗ ✗ O(logn) O(logn)
HElibDB [5] IND-CPA ✗ ✗ O(n) n/a .
Arx [36] IND-CPA ✗ ✗ O(logn) O(logn)
Dory [16] Irreversible ✓ ✓△ O(n) n/a .
HoTEE Irreversible ✓ ✓ O(logn) O(logn)
◦ : Depending on the applied encryption algorithm (e.g., use HE for IND-CPA).
△ : Potentially support, but not explicitly handle multi-party queries.

Table 1. Characterization of representative systems. n/a. means
not support such query type.Data Confidentiality column shows
varying levels of confidentiality guarantees, all sufficient.

multiple TEE and HE databases managed by different parties.
In this paradigm, each database first filters out records that do
not meet the condition specified in the query, then securely
joins the remaining records on common attributes. Actually,
such paradigm serves as a crucial building block for process-
ing over 70% distributed plaintext queries [29, 49, 51]. Below
we show two use cases of distributed encrypted queries sup-
ported by HoTEE, all encrypted fields are shaded.
Query-1 financial statistics [53].This application involves
the government querying total expenses incurred by each
department and joining them based on transaction IDs, using
data from EDBs belonging to different departments. While
the government completely trusts each department’s choice
of TEE or HE, the departments cannot share databases with
each other for taking a credit risk. HoTEE can enable this
sharing with the following query.

1 SELECT SUM(amount) AS total_expenses, department

2 FROM departmental_encrypted_databases
3 INNER JOIN edb.transaction_id

4 WHERE transaction_amount BETWEEN ‘10M’ AND ‘100M’

5 AND edb.category = ‘expense’

6 GROUP BY department;

Query-2medical diagnosis [28]. This application involves
multiple hospitals that want to study the symptoms and
prevalence of a new disease. Physicians in these hospitals
need to query medical data from EDBs belonging to different
hospitals. While the physicians trust each hospital’s choice
of TEE and HE, the hospitals cannot share their patients’
medical data directly due to privacy concerns. HoTEE can
facilitate this sharing with the following query.

1 SELECT COUNT(*) AS num_patients, symptom

2 FROM hospital_encrypted_databases
3 INNER JOIN edb.patient_id

4 WHERE patient_age BETWEEN ‘18’ AND ‘80’

5 AND patient_blood_type = ‘A+’
6 GROUP BY symptom;

3

github.com/osdip281/HoTEE

2.3 Preliminaries
Realizing the proposed computing paradigm requires a prin-
cipled query system to overcome two key challenges. Firstly,
the system must securely dispatch, execute, and verify client
queries in heterogeneous EDBs. Secondly, it must securely
aggregate query results from multiple parties and produce
decryptable records for the client without revealing the en-
cryption keys of those parties. To address these challenges,
we identify a tool with advanced security and functionality
features as particularly promising for such paradigm.
Bloom filter [11]. It is a compact data structure designed
for efficient membership testing. It operates by using a single
set to store the hash values of all elements. Specifically, a
Bloom filter B is anm-bit array that uses k independent and
uniformly distributed cryptographic hash functions {Hk },
each of which maps an element to an index in B. To insert
an element x into the filter, we compute its hash using {Hk }

and set all bits at the corresponding indices in B to 1. To test
if an element y is a member of the set, we again hash it using
{Hk }. If any of the bits at the corresponding indices in B are
0, then y is definitely not in the set (i.e., zero false negatives);
otherwise, y has a high probability of being in the set (with
small configurable false positives [11]).
Notably, while prior systems have utilized Bloom filters,

their use limited to specific file stores or securing particular
queries on TEE databases, as noted in [16, 51]. In contrast,
HoTEE is focused on building a unified query system that
can support multi-party joint queries on diverse EDBs.

3 Overview
3.1 System Model
Entities. Same as conventional (plaintext) databases [32, 38],
HoTEE’s participants has three types: client, proxy, and data-
base. Multiple clients form a single party (e.g., physicians
from one hospital, §2.2). Multiple parties outsource their en-
crypted data to database hosts on the public cloud, providing
encrypted query service to the clients through the proxy.
Data model. To exemplify our design, we employ the rela-
tional data model, followed by a discussion on extensibility
to encompass various types of databases and attributes.

Same as [39, 42], in HoTEE, an encrypted tableT contains
n confidential columns (or attributes) and has a primary key.
Clients encrypt every value before sending it to the data-
base. Concretely, in the case of a row (i.e., record) r , the
valuevi in column ci is represented as ciphertext E(vi) using
an encryption algorithm E selected by distinct parties. For
HE databases, BGV [19] is the preferred encryption algo-
rithm, and the party cannot divulge its HE encryption key
to databases or other parties. Conversely, AES-GCM [25] is
ideal for TEE databases, and the party’s encryption key can

be securely provisioned to the TEE after attestation [14].
In HoTEE, all encrypted records are versioned. This in-

volves clients maintaining the latest version of their own

record locally, and keeping them synchronized with corre-
sponding EDBs. In such a case, clients are assumed to have
already retrieved the latest version of a record before submit-
ting a new update query to that record. Dory [16], a promi-
nent encrypted file store, has a similar idea on versioning
for detecting breaches on file keyword (point) queries, while
HoTEE targets general queries, including range queries, on
general EDBs owned by multiple parties (§4.3).

HoTEE is highly extensible, which can be attributed to two
significant factors. Firstly, HoTEE is built on an unclustered
architecture [42], inwhich the database index and underlying
storage are decoupled. Consequently, HoTEE’s new secure
index transparently supports both structured relational data
model and unstructured key-value pairs (both evaluated in
§5). Secondly, HoTEE transforms real values and strings
into integers with standard IEEE 754 FPNs [40] and ASCII
characters [21] respectively, allowing the encoding of diverse
attributes for secure indexing in a unified manner.

3.2 Threat Model and Guarantees
In line with recent cloud-based EDBs [16, 51, 52], we assume
that the all databases can be compromised by malicious ad-
versariesA, who can arbitrarily deviate fromHoTEE’s proto-
col to learn private data. Examples ofA include database ad-
ministrators and privileged insiders. A can execute a range
of passive and active attacks, including extracting plaintext
using cipher analysis [41] and pre-image attack [47], and ma-
nipulating query results (e.g., via modifying, replaying, and
dropping). Nevertheless, A is computaionally infeasible to
reverse one-way functions like SHA-256 [33] or compromise
cryptographic encryption keys.

A client CL in HoTEE is only responsible for submitting a
distributed query, processing lightweight protocol messages,
and retrieving final results. We assume that CL is always
honest and does not engage in collusion with any database.
While access control [34] and denylist [50] are alternative
methods to prevent corrupted clients, they are outside the
scope of this work. The proxy PR is responsible for dispatch-
ing queries, verifying and aggregating final results. Staying
in line with [42, 52], we assume that the database proxy fol-
lows HoTEE’s protocol honestly but can be curious about
client queries and plaintext results.

Same as [16, 37], we assume the underlying storage engine
is maliciously secure. This guarantees that CL can always
retrieve the correct data version from the underlying stor-
age, by detecting rollback and fork attacks, which has been
thoroughly investigated in prior storage works [12, 44, 52].
Out-of-scope attacks. Same as [3, 8, 37, 42], HoTEE does
not handle metadata security, such as index access pattern
and ciphertext ordering. To provide such orthogonal meta-
data protection, HoTEE can be integrated with existing ad-
vanced oblivious algorithms (e.g., Dory [16], ORAM [15, 51]).
Also, coarse statistical properties like column names, index
volume, or value length are not HoTEE’s focus.

4

Proxy

Dispatcher

Aggregator

MFT index

Storage

2

Plist={P2, P3}

Storage

B+ treeIn-TEE

P1's Client

P2's Client

P3's Client

Trans.
P3's DB -

3 Search

Req tkn
4

P1's DB -

rf

rf

rf

rf rf

Hit!

Untrusted DB

1 HoTEE API6~

MFT index of DB x

Pi Party i

Result from DB i
rf HoTEE Range Filter

Record ri's address

X

HoTEE module
ri

rf

rf

3

r2r1 r3 r4

Storage
MFT index

P2's DB -

1

5
Verify & Key switch & Agg.

6

Joined result

MFT

... ...

Figure 2. HoTEE’s architecture and workflow.

HoTEE’s guarantees. HoTEE’s confidentiality guarantee
ensures that all index keys are irreversible [33], which means
that malicious adversaries are computationally infeasible to
reverse the encrypted index keys and retrieve original sensi-
tive data in plaintext. HoTEE’s integrity guarantee ensures
that any breaches on query results will be detected. These
guarantees are facilitated byHoTEE’s secure index, which ef-
fectively achieves high-performance encrypted queries with
logarithmic complexity. Formally, we have the following
theorem that captures HoTEE’s security:
Theorem 1. Given that the one-way function used in filter

construction is mathematically irreversible, and assuming that

ORE used in bias construction, homomorphic key switching

utilized in aggregation, and MAC used in authentication are

all semantically secure, and provided that the underlying stor-

age is maliciously secure, the HoTEE protocol for multi-party

joint query is one-way (i.e., mathematically irreversible) in the

presence of a malicious adversary A.

We prove the above theorem and present corresponding
complexity analysis in §4.4.

3.3 HoTEE’s Workflow Overview
Figure 2 shows HoTEE’s workflow with three phases.
• Phase 1: query dispatch. Same as plaintext distributed
databases, clients send signed queries to the proxy via a
TLS-enabled link (1). The proxy will drop the connection
if malformed queries are received, e.g., those with invalid
signatures from unknown parties. Queries are encrypted via
AES, which has been implemented efficiently in hardware.

The proxy runs a dispatching thread to determine the
appropriate database to forward a query. To illustrate, in Fig-
ure 2, upon receiving a point queryQ , the proxy decrypts the
query parameter Ex and converts it into a secure index prim-
itive called rangefilter (§4.2) in HoTEE (2). This primitive,
denoted as RFx , acts as a cipher identifier for the original
data X and is always encrypted (indicated by the red lock).
The proxy searches RFx in pre-stored Merkle rangeFilter

Trees (MFT) (introduced in Phase 2) for each database (3)
and forwards Q to database d if there exist relevant records
(defined as records that match the query parameter) in d
(concretely, search results in d’s MFT is not ϕ). Meanwhile,

LibHoTEE API Role Description

1 newQry(cond) CL1 Submit a new encrypted query to
HoTEE’s proxy (§3.3).

2 transform(E(k)) PR2 Transform a key k into HoTEE’s
searchable rangefilter (§4.2).

3 MFTSearch(rf) CL, DB3 R/W by searching on HoTEE’s
MFT index (§4.2).

4 reqTok(Ks) CL Request new tokens from other
clients for key switch (§4.3).

5 verify(r,root) PR Run HoTEE’s verification proto-
col to detect breaches (§4.3).

6 join(r,tkn) PR RunHoTEE’s key switch protocol,
then aggregate results (§4.3).

1 CL: CLient 2 PR: PRoxy 3 DB: Encrypted DataBase

Table 2. The API provided by HoTEE.
the proxy generates a list of parties Pl ist to which di belongs
and submits Pl ist to the aggregator thread (see Phase 3).
•Phase 2: local search.When dealing with transformed pa-
rameters in TEE databases, the workflow remains unchanged.
This involves decrypting the parameters within TEE and
searching plaintexts in a TEE-shielding B+-tree.

However, for HE databases, a novel approach is employed
where HoTEE searches RFx (e.g., α .RFx in database α) on
the MFT index. Unlike previous work that relies on specific
cryptographic algorithms to support designated queries with
high-complexity (§2.1), MFT enhances the searchability of
HE data by recursively stacking all records’ rangefilters into
a merkle-tree style structure, where each inner node’s value
is theOR gate computation result of its child nodes. MFT sup-
ports encrypted point and range queries on HE data, bridging
the functionality gap between TEE and HE databases (§4.2).
• Phase 3: data aggregate. During Phase 3, which runs
in parallel with Phase 2, the proxy requests key switch to-
kens from the parties listed in Pl ist (4). Upon receiving the
query results, the proxy conducts an integrity check using
two rules (5). The first rule, correctness, requires that the
results match the query parameters or fall within the spec-
ified boundary, and that the re-computed root rangefilter
aligns with that of the data owner party. The second rule,
freshness, mandates that the results are based on the most
recent version, verified by checking the MAC on rangefilters
(§4.2). Once the results pass the integrity check, the proxy
switches the keys of the results from different parties using
the requested tokens (6), thereby enabling the client to de-
crypt and utilize them. Finally, the key-switched results are
joined and returned to the client (§4.3).

Overall, the highlight of HoTEE lies in its ability to provide
provable guarantees of confidentiality and integrity, along
with logarithmic search complexity, for general multi-party
joint queries on malicious EDBs. This is achieved through
two key aspects. Firstly, HoTEE employs a novel approach
of constructing a new secure index that efficiently handles
general queries while bypassing inherent deficiencies and
limited capabilities of prior approaches. Secondly, the new
secure index enables effective verification of query results in

5

a single data structure, ensuring that HoTEE simultaneously
achieves all desired security and efficiency properties.
4 Protocol Description
This section first describes a strawman index design inspired
by bloom filter (§4.1) and then introducesHoTEE’s newMFT
index based on the strawman index (§4.2). Next we present
SDA, a secure data aggregation protocol that locates query-
dependent parties using MFT, transforms and aggregates
multi-party data into querier-decryptable data (§4.3).

4.1 A Preliminary Subfilter-based Index
Preliminaries. A bloom filter [11] is a space-efficient data
structure that provides membership information: all ele-
ments are added to a single set and it checks whether an
element is a member of a set. It also has an intrinsic confiden-
tial characteristic: the elements themselves are not added to
a set, instead the hash is added to the set. Formally, a bloom
filter B is an array ofm bits and parameterized by k inde-
pendently uniform hash functions {Hk }, where {Hk } map
an element to k positions in B uniformly, and all elements
are mapped to a single array in a monolithic manner.

Traditional monolithic bloom filter supports confidential
membership checks. Specifically, to add an element x to B
before checking, one uses the hash functions in {Hk } to hash
x and sets all bits at the position of hash values to 1. Then, to
check whether x is in the set, one also hashes x using the k
hash functions. If any bit at the position of hash values is 0, x
is definitely not in this set (none false negatives); otherwise,
y is in the set (with small configurable false positives).
Overall, the traditional monolithic bloom filter supports

membership checks using bit representation and inherits the
confidentiality as long as we make standard assumptions on
the one-wayness of cryptographic hash functions [20],
Subfilter-based search index.Owing to the monolithic de-
sign, a traditional bloom filter supports only membership
check by telling whether an element (hash) is in a set. Nev-
ertheless, it cannot serve as an index for locating data in
storage.
We observe that the confidential characteristic of bloom

filters can be useful for encrypted search, thus in our initial
design, we divide a monolithic bloom filter into subfilters

where each subfilter stores the hash (in bits) for only one

element. As shown in Figure 3, subfilters have a constant
array size and are recursively stacked in a Merkle-tree style
for encrypted search. Specifically, each leaf node in the sub-
filter tree stores one subfilter of an index key (e.g., "1001"
for index key 2) and is sorted in plaintext key order; for
each inner node (all nodes except the last layer), its value
is the element-wise OR gate computation result of its child
nodes’ subfilters: given anm length subfilter, for an inner
node inner with k child nodes cnk , the inner node’s subfilter
is:
inner [i] = cn1[i] or ... cnt [i] or ... cnk [i] (∀i ∈ [0,m]) (1)

Same as B+-tree, only the leaf nodes store values (e.g., record
pointers), the inner nodes are only for indexing (tree traver-
sal).

The design rationale behind subfilter tree is that, if a "1"
bit is present in a child node’s subfilter, afterOR computation
with other child nodes’ subfilters, its parent node’s subfilter
must contain that "1" bit (e.g., if cnt [0] ="1", it always holds
inner [0] ="1"). This implies HoTEE’s new insight of using
existence information for searching: if one element exists in
a subfilter node (i.e., hashes of the element are set to "1"),
the element must exist in its parent node’s subfilter. This
enables HoTEE to traverse a subfilter tree in a top-down
manner by verifying the existence of query parameters in
subfilter nodes with confidentiality, rather than comparing
the plaintext values as in traditional B+-tree.

Based on the subfilter tree, to conduct an equality search,
instead of searching with plaintext query parameters (for
short, parameter), the client generates an encrypted subfilter
of the parameter using Equation 1, then the database tra-
verses the subfilter tree to locate the corresponding record of
the parameter (Figure 3). Specifically, each inner node con-
ducts subfilter comparison to verify whether every "1" bit of
the parameter exists in the current node’s subfilter. If so, the
parameter will be passed to the child nodes iteratively until
reaching the bottom layer. When reaching the leaf nodes,
different from the verification in inner nodes, a leaf node
must verify that every single bit in its subfilter matches the
parameter as one subfilter comprises only one index key.
The equality search strategy can be extended to support

range search. Given two range parameters (i.e., left and right
boundaries), they are first transformed into two subfilters
using Equation 1, then the subfilter tree searches two subfil-
ters same as the equality search and locates two leaf nodes
(if matched). Last, since leaf nodes are sorted during index
construction, all leaf nodes between the two searched leaf
nodes are returned as searched results same as B+-tree.

4.2 HoTEE’s Complete Confidential Index
Limitation of strawman subfilter index. Although the
subfilter tree (§4.1) can support equality and range query
with logarithmic search complexity, however, since the sub-
filter tree is driven by existence verification rather than nu-
merical comparison as in traditional B+-tree and there is no
order among subfilters, two fundamental limitations (L1, L2)
arise.

First (L1), a subfilter tree cannot support non-existent key
search. Apparently, range queries can search on parameters
that are non-existent in databases as clients can choose what-
ever search boundaries they want. This is not a problem in
traditional B+-tree because index nodes and query parame-
ters are plaintexts, thus the position of non-existent keys can
be trivially located by finding two adjacent plaintexts. How-
ever, since subfilter is encrypted and there are no numerical

6

“2” “5” “10”
Traditional monolithic bloom filter (check-only)

Example: Search ("5")

("2")

Search("1100")

HoTEE's preliminary subfilter tree (searchable)

1 0 0 0 1 1 0 1... ...

1 0 0 1 1 1 0 0 0 1 0 1

1 1 0 1

1 1 0 1

Hit!

{Hash1, Hash2}

traverse path X bit mismatch X bit matched

("5") ("10")

Record ("2") Record ("5") Record ("10")

subfilter of "5"

Figure 3. An initial search index built on top of subfilters.

orders between subfilters, a subfilter tree cannot locate po-
sitions of non-existent keys through subfilter comparison.
Second (L2), owing to the same reason, a subfilter tree does
not support write operations (e.g., insert), because the tree
cannot locate the write position among sorted leaf nodes.
Design rationale. To tackle L1 and L2, our key idea is that,
instead of handling specific query operations using special
encryption algorithms as in previous work [5, 31, 37],HoTEE
embeds the query operations into a secure data structure, and
the data structure is built on traditional encryption schemes
that provide with confidentiality guarantees.
Specifically, we identify determinism and order, two es-

sential properties for equality and range search that must
be retained in one searchable data structure. Recall that Ho-
TEE’s initial subfilter tree already constructs a searchable
data structure with determinism by creating subfilters with
deterministic plaintext-ciphertext maps, and confidentiality
that directly inherits from cryptographic hash functions in
bloom filters. Thus, adding orders to subfilters without sacri-
ficing confidentiality is on the critical path of a secure index
design.
Rangefilter primitive. To this end, we propose rangefilter,
a primitive for constructing a confidential search index by
tackling two limitations mentioned above. The routine to
construct rangefilter is shown in Figure 4. Specifically, we
generate a confidential bias for each subfilter with a bias
function that fulfills three rules. First, the function should be
monolithic, ensuring that a larger plaintext always maps to a
larger bias to keep encrypted data ordered. Second, to reduce
the overhead on the client side, the function should be state-
less, which means that no additional states (e.g., previous
biases) should be maintained at runtime, as this generation
process happens on the client side. Last, the function should
provide randomness such that an adversary that observes a
bias should not immediately deduce the plaintext.
Definition 1 (Confidential bias function). Given two plain-
texts p1 > p2, if a bias function f satisfies: (1) f (p1) > f (p2),
(2) f is independent of any previous states, and (3) f varies

Cryptographic Hash

(e.g., SHA-256)
Bias with obfuscation

(e.g., Eq 2)

Plaintext Index Key

Client side

Database side

§HoTEE Subfilter ()4.1 Confidential Bias

HoTEE Rangefilter

Adversary unobservable / observable

* N...

/

HoTEE MFT Index ()4.2§

Figure 4. The routine to construct HoTEE’s rangefilter primitive.

within a certain range of values, then f is regarded as a
qualified confidential bias function for rangefilters.

We formulate that a bias function f should have the form
of f(x)=g(x)+t(x,y,z), where g(x) is monotonically increasing
on x, t(x,y,z) is a parametric function which varies within
a certain range and has a fixed number of values, and does
not overwhelm the monotonicity of g(x). Any functions that
fulfill the above formulation can be applied to generate biases
for subfilters. In HoTEE, we use the bias function

f (x) = kx + hash(x), hash(x) ∈ [0,k) (2)
in which x is the plaintext, k is a confidential coin, both
are owned by the client. By applying bias b to am length
subfilter (i.e.,m bits), a rangefilter has a biased range of [b+γ ,
m + b + γ], in which γ is a random parameter generated by
the client to obfuscate adversaries.
Definition 2 (HoTEE rangefilter). A rangefilter is a secure
data structure that comprises a subfilter (Equation 1) and
a biased range (Equation 2), providing data existence and
order information for encrypted equality and range search.
To remark, we emphasize that the entire process of gen-

erating rangefilters at the client side is stateless because (1)
the bias function is stateless (Equation 2), and (2) generat-
ing subfilters requires only storing parameters of a fixed
set of hash functions. Overall, unlike previous work that
requires clients to store stale states or even a full replica of
outsourced data [36], HoTEE supports lightweight clients
without paying additional storage overhead.
MFT confidential index. Based on rangefilter, we con-
struct Merkle Rangefilter Tree (MFT), a confidential index
for supporting general queries on encrypted data with loga-
rithmic search complexity. We present the construction and
search operations on MFT, and use MFT for query authenti-
cation.
• MFT construction. To generate rangefilters, the client
takes plaintexts of index keys as input and outputs range-
filters by generating subfilters and biases respectively (Algo 1).
Specifically, the plaintexts are sorted to ensure the encrypted
data preserve the same numerical order as plaintexts (line
9). Then, subfilters are constructed using client-chosen (un-
known to the database) cryptographic hash functions (e.g.,
SHA-256) with Equation 1 (line 10∼14). Last, biases are gen-
erated using Equation 2, and are added with obfuscation

7

Algorithm 1: MFT Index Preparation (Client side)
1 Input:
2 plaintext[] ▷ Plaintext keys for indexing
3 chashfunc[] ▷ Cryptographic hash functions for filters
4 k, γ ▷ Obfuscation parameters
5 Output:
6 rf[] ▷ Rangefilters of plaintexts for encrypted search
7 Function Prepare() do
8 sor tedPtx []← sort(plaintext)

▽ Generate subfilters
9 foreach plaintext p in sor tedPtx do
10 subf il ter [m]← {0} ▷m is subfilter’s bit length
11 foreach evaluator e in chashfunc do
12 subf il ter .set(e(p), 1)
13 r f .insert(subfilter)

▽ Generate biases in plaintext order
14 ranдemin ← γ , ranдemax ←m + γ
15 star t ← 0
16 foreach plaintext p in sor tedPtx do
17 bias ← k ∗ p + hash(p) ▷ hash(p) ∈ [0, k)
18 p .rmin ← bias + ranдemin
19 p .rmax ← bias + ranдemax
20 r f [star t + +].rnд ← {p .rmin, p .rmax }
21 r eturn r f

parameters to produce biased ranges of subfilters, which
contain order information for searching (line 15∼20).
With rangefilters, the client constructs MFT before up-

loading it index to the cloud database, as shown in Algo 3 in
the appendix. Notably, each MFT inner node’s range is con-
structed as the union of its child nodes’ ranges for traversal
(introduced in MFT search operations below).

MFT inherits two advantages of a traditional B+-tree. First,
all MFT leaf nodes are sorted in plaintext order and linked for
fast data fetching. Second, only MFT leaf nodes contain val-
ues (i.e., storage pointers of records), and other inner nodes
are only for indexing. Nevertheless, different from traditional
B+-tree, MFT is constructed by recursively stacking range-
filters (line 14∼31), which display as an encrypted form of
index keys including HoTEE’s subfilters and biased ranges.
• MFT search operations. In MFT, the high-level idea of
encrypted search is to use the biased range (for short, range)
for indexing (tree traversal) among inner nodes as the biased
range preserves the numerical orders of encrypted data as in
plaintexts, and use the subfilter for point match among leaf
nodes as it contains the existence information of plaintexts
(Algo 2). Since most read/write queries are composed of
equality and range operations [30], we describe how Ho-
TEE’s MFT index handles encrypted equality and range
search below.
To handle encrypted equality search, MFT compares pa-

rameter’s range with each tree node’s range until the bottom
layer. For each comparison, if the target’s range is within
the range of the tree node, it implies that the tree node is
on the target’s search path, because a parent node’s range
is the union computation result of its child nodes’ ranges.
When reaching the bottom layer,HoTEE compares subfilters
to see if every bit in parameter’s subfilter matches a leaf
node’s subfilter, and only when every single bit matches, the
final result is searched (line 5∼14). This is because, different

left / right boundary search path

N1

N2 N3

N4 N5 N6 N7

N8 N9 N10 N11 N14 N15

R6R5R4R3R2R1 R8R7

 MFT range search: [K1, K2]

K1 N13

Ri record

N12 = K2

Ni matched index node Ni additional index nodes fetched for authentication

Figure 5. A typical MFT range search example on HoTEE.

from a monolithic bloom filter design, HoTEE maintains
one-to-one maps between subfilters and plaintexts (§4.1).
To handle encrypted range search, MFT conducts two

equality searches on the left and right boundary parameters,
and outputs all leaf nodes between two searched leaf nodes
(line 25∼32). Besides,MFT tackles non-existent key search for
parameters as shown in Figure 5. Concretely, when the left
boundary is non-existent, i.e., the range of K1 is within the
range of node N2 but none of N2’s child nodes’ ranges fully
containK1’s range (owing to themonotonicity in Equation 2),
MFT searches the smallest data larger than the left boundary
and confirmsN10 as the first searched index node (line 15∼19).
Similarly, if the right boundary is non-existent, MFT searches
the largest data smaller than the right boundary (line 20∼24).
In Figure 5’s case, the right boundary is existent because
MFT conducts subfilter comparison at leaf nodes and finds
out that N12’s subfilter exactly matches K2’s. Last, all leaf
nodes’ records in green box (R3∼R5) are returned.
• MFT query authentication. As aforementioned, MFT’s
recursive Merkle-tree style structure enables general range
queries even when query parameters are non-existent, and
such structure also allows clients to efficiently authenticate
queries by checking the absence and presence of data records
in an outsourced database: any manipulation or omission of
the query results will fail to regenerate the root subfilter, and
thus be detected. To authenticate encrypted range queries,
HoTEE takes the following two steps.
First (Proof fetching), on receiving a range query, the

database searches for all records whose key falls within the
search range (Algo 2) and constructs a proof including (1)
one encrypted record to the immediate left of the lower-
bound (Rl) and one encrypted record to the immediate right
of the upper-bound of query result (Rr), and (2) additional
subfilters to assist recompute the root’s subfilter, i.e. subfil-
ters of all left sibling nodes of MFT left traversal path and
right sibling nodes of the right MFT traversal path.

Second (Proof checking), on receiving the proof and the
query result, the client ensures no manipulation or omission
of query result by checking two rules. First, Rl ’s range is
smaller than the left boundary’s range, and Rr ’s range is
larger than the right boundary’s range. Second, the client
recomputes the root subfilter in a bottom-up manner based

8

Algorithm 2: MFT Confidential Search (Database side)
1 Input:
2 root ▷ Entry of MFT from Algo 3
3 key (i.e., rangefilter) ▷ Search target
4 opt (P | L | R) ▷ Search option: Point search or range

search with Left or Right boundary; default is P
5 Function EqualitySearch(root, key, opt=p) do

▽ Compare subfilters (§4.1) at leaf nodes
6 if isLea f (root) then

▽ Every subfilter bit must match
7 if key.sub f ilter = root .sub f ilter then
8 return root
9 else
10 return null

▽ Use biased range to traverse MFT
11 if key.rnд ∈ root .le f t .rnд then
12 return EqualitySearch(root.left, key)
13 if key.rnд ∈ root .riдht .rnд then
14 return EqualitySearch(root.right, key)

▽ If left boundary is non-existent (Fig 5)
15 if opt = l then

▽ Find smallest data larger than key
16 root ← root .riдht
17 while !isLea f (root) do
18 root ← root .le f t
19 return root

▽ If right boundary is non-existent
20 if opt = r then

▽ Find largest data smaller than key
21 root ← root .le f t
22 while !isLea f (root) do
23 root ← root .riдht
24 return root
25 Function RangeSearch(root, [key1, key2]) do
26 value[]← ∅
27 le f t ← EqualitySearch(root, key1, l)
28 riдht ← EqualitySearch(root, key2, r)

▽ Traverse linked leaves in order
29 while le f t .next ! = riдht do
30 value .insert(left.next)
31 le f t ← le f t .next
32 return value

on all the query results and all additional sibling subfilters,
and compares the computed root subfilter with the one it
owned. If two subfilters are the same, the query result is
authenticated successfully.
Figure 5 shows a running example. Given a range query

that searches for records in [K1,K2], it returns {N10, N11, N12}
as the query result. For authentication, MFT returns N9∼N13:
N9 andN13 are returned to prove that no records in range [K1,
N10) and (N12, K2] are omitted. Two additional MFT nodes
(N4 and N7) are also returned to reconstruct the root subfilter
and compare it to the local root subfilter for authentication.

Note that, we omit the discussion of authenticating equal-
ity queries here, because it takes the same theory of authen-
tication and uses similar steps as range queries.

4.3 A Unified Query System Leveraging MFT
WithMFT confidential index,HoTEE runs hybrid-trustmulti-
party joint query in three phases (Figure 2).
Phase 1: query dispatch. Before submitting queries, mul-
tiple parties first construct MFTs on their chosen index keys

of data records (records are encrypted by either TEE using
AES-GCM [25] or HE using BGV [19] based on independent
trusts). Note that, MFT is constructed by attribute, multiple
attributes can build multiple MFTs. Given the semi-honest
assumption of clients (§3.2), a party cannot directly share
its encryption keys for building MFTs with other parties,
including the hash functions for generating subfilters (§4.1)
and obfuscation parameters for generating biased ranges
(§4.2). However, without knowing multiple parties’ encryp-
tion keys, it is infeasible for a client (in one party) to construct
query parameters (on index keys) that can be dispatched
to query-dependent databases of multiple parties and then
search in dispatched dependent databases.
To remedy this issue, our key observation is that even if

multiple parties have distinct trusts of TEE or HE on pro-
tecting data records, query parameters are commonly less
sensitive. Hence, it is secure to set up TEE enclaves (attested
by all parties) at the proxy to store the encryption keys of
parties, transform parameters and locate query-dependent
databases without revealing multiple parties’ encryption
keys.
Specifically, a client sends a new query encrypted with

AES to the proxy (1), the proxy decrypts that query with
AES decryption key in enclave, and transforms the parame-
ters into rangefilters using each party’s MFT encryption keys
in an enclave (2). By searching transformed rangefilters on
MFTs, the proxy learns which databases contain the searched
content of the query same as existing plaintext databases,
while the proxy learns nothing about the plaintexts owing
to the secure execution in an enclave. After searching, the
proxy forms a party list Pl ist containing all related parties
that the query depends on (for multi-party data aggrega-
tion), and dispatches the transformed query to dependent
databases.
Phase 2: local search. Upon receiving queries from the
proxy, TEE databases decrypt query parameters with pre-
stored keys in enclave and search with a TEE-shielding B+-
tree where each tree node’s value is plaintext; HE databases
directly search on MFT with transformed parameters (5).
Phase 3: data aggregate. Before sending searched query
results (i.e., data records) to the client, a subtle case is that,
since the records are retrieved from multiple parties, a client
cannot decrypt all records because it knows only its party’s
decryption key. A trivial solution is to decrypt all retrieved
records in the proxy enclave, and re-encrypt them with the
client’s pre-stored key, such that the client can decrypt data
and the plaintext records are invisible to the semi-honest
proxy. However, this solution does not work in a hybrid-trust
scenario where records contain HE data, which cannot be
decrypted in a TEE owing to the different trusts (§3.2).
Aggregatingmulti-party datawith SDA.Wepropose SDA,
a protocol that securely aggregates multi-party data without
decrypting thus violating HE’s confidentiality, by leverag-
ing two key weapons: the MFT confidential index and key

9

switch [19], a homomorphic algorithm that can switch the
encryption key of HE data to a new key without decrypting
it (we describe the detail of key switch syntax in Appen-
dix A.5). At a high level, SDA locates query-dependent par-
ties by searching on MFT confidential index and produces
Pl ist at the proxy in Phase 1, the proxy sends Pl ist to the
client and the client requests tokens from parties in Pl ist (3),
finally the retrieved records are transformed by running key
switch with tokens at the proxy and sent back to the client
(4).

HoTEE’s SDA protocol runs with three steps. First, Ho-
TEE transforms query parameters and searches on MFTs
at the proxy, locates databases that contain the matching
data and generates a party list Pi that these databases belong
to (§4.2). Second, the proxy signs Pi and returns Pi to the
client, the client verifies the signature and sends i disposable
encryption keys Si to each party (3). Upon receiving Si ,
each party runs KS.Enc(S , Si) to produce a secret token tkni
by encrypting its encryption key with Si , and sends tkni
to the proxy enclave for aggregation later. Last, the proxy
transforms each retrieved record from party Pi (i.e., ctxi)
with the party’s token (i.e., tkni) by running KS.Switch(ctxi ,
tkni) in enclave (4), and sends transformed results to the
client.

4.4 Complexity and Security Analysis
Complexity analysis. Same as a traditional B+-tree or
other binary search trees, the time complexity of travers-
ing inner nodes is O(logn), where n is the total number of
MFT nodes; the time complexity of verifying subfilters at
leaf nodes is O(m), wherem is the length of HoTEE’s subfil-
ter. Therefore, the time complexity of basic operations that
traverse inner nodes and verify leaf nodes such as equal-
ity query, range query, insert, and delete is O(logn)+O(m).
Sincem ≪ n, the actual time complexity for all basic oper-
ations is O(logn); the time complexity of other operations
that combines basic operations including join and update is
O(logn).
Security analysis. We give a two-step proof sketch of Ho-
TEE’s security guarantee by analyzing two core components
created by HoTEE: the MFT index and SDA protocol.
• Step 1: MFT index’s confidentiality. Same as existing
EDBs [3, 37], we analyze the index confidentiality under
chosen-plaintext attacks (CPA), a well-known attack that
tries to infer plaintexts by using adversary-observable vari-
ables to deduce the black-box encryption algorithm.
Specifically, we illustrate MFT’s confidentiality on data

records and index keys separately. First, for data records,
same as existing EDBs [37, 42], their confidentiality directly
inherits from TEE’s or HE’s confidentiality guarantee, which
is secure against CPA. Second, for the index keys on the
database, a CPA attacker may use the observed rangefilter
including subfilter and biased range to deduce plaintexts: for

subfilters, it is impossible for the attacker to infer the plain-
texts as we make standard assumptions on the one-wayness
of cryptographic hash functions; for the biased range, even
though the attacker may deduce the bias function owing
to its linearity and monotonicity (formulated in §4.2), how-
ever, the attacker cannot infer the plaintext as well because
the biased range is obfuscated with a client-chosen random
parameter γ .
• Step 2: SDA protocol’s confidentiality. The security of
HoTEE’s SDA protocol directly inherits the cryptographic
guarantee of the key switch algorithm [19], a homomorphic
algorithm that was used for reducing HE data’s noises.
Overall, we prove that HoTEE provides the same strong

confidentiality guarantee as prior work from the aspects
of two core components: HoTEE’s MFT index provides the
same confidentiality against CPA attacks (Step 1) and the
SDA protocol directly inherits the used HE algorithm’s cryp-
tographic guarantee (Step 2).

5 Evaluation
Testbed.All experiments were done on our clustermachines,
each equipped with a 2.60GHz Intel E5-2690 V3 CPU, 64GB
memory, 40Gbps NIC, and 24 cores. Each node, including
clients, databases, and the proxy, was executed in a docker
container. The average ping latency between the nodes was
set at 0.17ms with the aid of Linux traffic control [6].
Baseline. We constructed two instances, one using SQL
(MySQL [32]) and the other using NoSQL (WiredTiger [13]).
Both instances incorporated both HE and TEE databases.
We compared HoTEE with three baselines: CryptDB [37],
HElibDB [5], and vanilla insecure databases (i.e., MySQL and
WiredTiger). MySQL is commonly used as the SQL back-
end for EDBs; WiredTiger is the default NoSQL KV backend
for MongoDB. CryptDB and HElibDB are imperative HE
databases. CryptDB enables general queries on HE data us-
ing deterministic encryption (DET) [10] for point queries,
and order-preserving encryption (OPE) [4] for range queries
with separate indexes. HElibDB relies on Fermat’s Little The-
orem [18] to allow directly evaluate the equivalence of HE
data but requires scanning the entire dataset.
For a comparable analysis, we expanded upon baselines

in three ways. Firstly, we replaced CryptDB’s HE algorithm
from partial HE to fully HE BGV [19], to ensure the same
computational functionality as HoTEE. Secondly, all base-
lines were extensively implemented on both SQL and NoSQL
instances. Thirdly, we integratedHoTEE’s core proxy compo-
nents (refer to Figure 2) in CryptDB and HElibDB to support
distributed queries, as in HoTEE.

We run all baselines with the cutting-edge TEE database,
Azure EdgelessDB [3], which equips an SGX-shielded B+-
tree with state-of-the-art index performance. Notably, we
did not compare our results to other EDBs because they

10

9.5x
10x

2.5x
3.0x

16x
16.5x

HoTEE-MySQL CryptDB-MySQL HElib-MySQL

6x
7x

0.58ms
10.5x 86x

88x

Point Query0x
0.5x

1x
1.5x

2x
2.5x

0.55ms

Range Query0x
0.5x

1x
1.5x

2x

N
ot

 S
up

po
rt

ed

0.87ms

Join0x
0.5x

1x
1.5x

2x
2.5x 0.57ms

Insert0x
1x
2x
3x

Update0x

0.5x

1x
0.56ms

Delete0x
2x
4x
6x 0.36ms

No
rm

-la
te

nc
y

Figure 6. Normalized end-to-end latency of running TPC-C on all baselines in SQL instances. All systems’ latency results are normalized to
vanilla insecure MySQL (in green dashed line). Values on each red bar indicates HoTEE’s averaged latency.

Distributed query latency (in milliseconds)
Systems (in SQL instance) HoTEE CryptDB
Query type PQ RQ PQ RQ
P1 (proxy): Parameter transform 0.11 0.13 0.19 0.32
P2 (proxy): Dispatch search 0.12 0.18 0.06 0.1
P3 (database): Record search 4e-4 1e-3 2e-4 1e-3
P4 (proxy): Query authenticate 1e-3 1e-3 N/S N/S
P5 (proxy): Aggregate & Key switch 0.17 0.21 0.12 0.24
P6 (client): Result decrypt 0.15 0.35 0.21 0.52
End-to-end (

∑
Pi) 0.55 0.87 0.58 1.18

Table 3. Breakdown and comparison of query latency. PQ and RQ
means point and range query respectively. P1 (prox.) means the
first phase of parameter transformation occurs in the proxy, etc.

either lack support for HE queries (e.g., HybrTC [51]) or
focus solely on specific file stores (e.g., Dory [16]).
Workload and default setting. Since there is no standard
benchmark for evaluating query performance on heteroge-
neous EDBs, for a fair comparison, we evaluated workloads
from recent EDBs [3, 37, 52, 56], which includes the TPC-C
benchmark [27] for relational databases and a customized
workload for NoSQL key-value store.

Specifically, we followed the multi-party deployment ap-
proach [51] by first partitioning TPC-C randomly and uni-
formly across databases based onwarehouse ID, and assigned
clients to parties based on their associated warehouse IDs.
For customized NoSQL workloads, we simulated financial
statistics and medical diagnosis workload (as described in
§2.2) by generating 210 fixed-size keys (8 bytes) and values
(64 bytes) in a manner similar to [54], and horizontally parti-
tioned all key-value pairs across databases as in TPC-C.
To match the setup of existing multi-party query sys-

tems [16, 51], we equipped each party with two databases.
Unless for scalability experiments, we simulated two par-
ties: one utilized TEE databases while the other utilized HE
databases. All workloads were encrypted depending on the
EDB type. In the homomorphic setting, we employed HElib’s
BGV implementation [5], using a plaintext prime modulus of
29 and a ciphertext modulus of 1009 to compress ciphertexts
with an expansion coefficient of 4.

We ran each experiment for 60 seconds and collected the
result in themiddle 30s (i.e., 15s∼45s) to avoid the disturbance
caused by system start-up and cool-down. Our evaluation
focuses on the following questions:
§5.1 How efficient is HoTEE compared to baselines?
§5.2 Can HoTEE scale to more parties and larger datasets?
§5.3 How sensitive is HoTEE on heterogeneity?
§5.4 Is HoTEE robust to integrity breaches?

0.4 0.6 0.8 1.0 1.2
Latency (ms)

0.2
0.4
0.6
0.8
1.0

CD
F

MySQL
HoTEE-MySQL
CryptDB-MySQL

(a) Run in a SQL instance

0.0 0.5 1.0 1.5 2.0
Latency (ms)

0.2
0.4
0.6
0.8
1.0

CD
F

WiredTiger
HoTEE-WiredTiger
CryptDB-WiredTiger

(b) Run in a NoSQL instance
Figure 7. Distributions of end-to-end range query latency running
TPC-C and customized key-value workload on all baselines.

5.1 End-to-end Performance
We first evaluated the performance of HoTEE and baselines
in a fault-free scenario where there were no breaches in
the query results. The results presented in Figure 6 indicate
that HoTEE demonstrated a lower latency (between 5.3x to
16.1x, excluding insert queries) compared to HElibDB. This is
attributed to the use ofMFT index byHoTEE, which provides
logarithmic search complexity as opposed to HElibDB that
requires linear scans to search for equivalent encrypted data,
leading to reduced latency for all read queries.
Priority: read query latency. HElibDB achieved lower in-
sert latency (between 3x to 3.3x) compared to HoTEE and
CryptDB. This is attributed to the fact that HElibDB simply
appends new records to its storage by trading off the lin-
ear search latency on read queries. In contrast, HoTEE and
CryptDB both maintain sorted records in storage, leading to
higher insert latency by first looking up a position through
indexing before writing a new record to that position.
It is worth noting that in the multi-party joint query sce-

nario of HoTEE, read could occur more frequently (refer
to §2.2), and hence, we deem it acceptable to make such a
performance trade-off, which has been a common practice
in existing insecure databases [13, 32].
General functionality and efficiency. Figure 6 shows that
HoTEE had 6% to 28% lower query latency than CryptDB.
CryptDB builds separate tree-based indexes for different
types of queries, supporting general query functionalities
with logarithmic search complexity. Despite the same search
complexity in theory, HoTEE still outperformed CryptDB in
practice in terms of both query latency (verified in Table 3)
and throughput (shown in Figure 8).

Table 3 verified the efficiency of HoTEE’s MFT index over
baseline. Specifically, CryptDB’s major overhead was ob-
served to be in P1 and P6 for cryptographic operations. In
contrast, HoTEE incurred additional latency in P2 for lin-
ear comparison of subfilters at MFT’s leaf nodes, and P4 for

11

1x

202kop/s

665kop/s

112kop/s

418kop/s

204kop/s

911kop/s

200kop/s

620kop/s

298kop/s

1016kop/s

Point Query Range Query Insert Update Delete0.0x
0.1x
0.2x
0.3x 202kop/s

112kop/s

N
ot

 S
up

po
rt

ed

204kop/s

200kop/s 298kop/s

HoTEE-WiredTiger CryptDB-WiredTiger HElib-WiredTiger

No
rm

-th
ro

ug
hp

ut

Figure 8. Normalized throughput in NoSQL instances. The green
dashed line is vanilla (insecure) WiredTiger’s averaged throughput.
Values on red bars indicate HoTEE’s averaged throughput.

0 25 50 75 100 125 150 175 200
Throughput (kop/s)

0.092
0.094
0.096
0.098
0.100
0.102

La
te

nc
y

(m
s)

2 parties
5 parties
10 parties

(a) Point Query

0 25 50 75 100 125 150 175 200
Throughput (kop/s)

0.172
0.174
0.176
0.178
0.180
0.182

La
te

nc
y

(m
s)

2 parties
5 parties
10 parties

(b) Range Query
Figure 9. Performance of HoTEE with varying numbers of parties.
query authentication. Nonetheless, the overhead of CryptDB
outweighed that of HoTEE.
We then evaluated the latency distribution by running

range queries on all baselines in various workloads and
databases. As shown in Figure 7, HoTEE significantly re-
duced range query latency for all workloads in comparison
to CryptDB, consistent with the results in Figure 6. The la-
tency distributions were influenced by the length of range
queries, whereby longer queries resulted in more queried
results, leading to higher latency of aggregation, key switch,
and decryption. Notably, insecure databases do not require
key switches and decryption. HElibDB was not evaluated
since it does not support range queries.
High throughput on mixed queries. For workload with
mixed point and range queries, as shown in Figure 8, HoTEE
achieved 1.31x to 1.88x higher throughput than CryptDB
on NoSQL instances. This can be attributed to the fact that
CryptDB’s design requires frequent shuffling between DET
index and OPE index when point and range queries are
mixed, whereas HoTEE’s MFT directly supports both types
of queries in a single secure data structure, thus avoiding
CryptDB’s index shuffling overhead. Besides, we further opti-
mized the throughput by employing the batching strategy [5]
on homomorphic encryption/decryption and key switching
(refer to Appendix A.6 for more details).

In summary, HoTEE supports general queries with low
latency and high throughput. HoTEE favors read query per-
formance and tolerates moderate write (insert) performance
downgrading. HoTEE is most suitable for diverse applica-
tions that desire high read performance and strong security,
such as financial statistics [53] and medical diagnosis [28].

5.2 Scalability
Next we tested howHoTEE, a multi-party joint query system,
scales to more parties and larger datasets.
Scale to more parties. We let each party equip one TEE
node and one HE node, and we varied the number of par-
ties up to a maximum of 10, which is considered sufficient

28 210 212 214 216 218 220

Number of key-value pairs
0.00

0.02

0.04

0.06

La
te

nc
y

(m
s)

WiredTiger
HoTEE-WiredTiger
CryptDB-WiredTiger
HElib-WiredTiger

(a) Point Query

28 210 212 214 216 218 220

Number of key-value pairs
0.00

0.05

0.10

0.15

0.20

La
te

nc
y

(m
s) WiredTiger

HoTEE-WiredTiger
CryptDB-WiredTiger

(b) Range Query
Figure 10. Performance comparison with varying dataset sizes.

for collaborative queries in real-world scenarios [51]. Fig-
ure 9(a) and Figure 9(b) depict HoTEE’s throughput-latency
performance for typical queries. With the number of par-
ties increased, both HoTEE’s throughput and tail latency
increased. Note that the latency gap between different num-
bers of parties on range queries was larger compared to
point queries because range queries typically fetch more
data, leading to increased query processing time.
Scale to larger datasets. Then we evaluated baselines with
varying sizes of the key-value datasets. Figure 10(a) and
Figure 10(b) demonstrate that HoTEE’s latency scales loga-
rithmically, which confirms our complexity analysis in §4.4.
Regarding point queries, both HoTEE and CryptDB in-

curred moderate overhead compared to insecure WiredTiger,
while HElibDB experienced significantly higher latency due
to its requirement to linearly scan the whole dataset. Con-
cerning range queries, HoTEE achieved lower latency than
CryptDB (in comparison to point queries), which can be at-
tributed to the MFT index used by HoTEE, as it takes less
time to transform queries than the cryptographic approach
used by CryptDB (proven in the breakdown Table 3). We did
not compare HElibDB in Figure 10(b) because it does not
support range queries.

5.3 Sensitivity Study on Heterogeneity
To evaluateHoTEE’s sensitivity, we varied the TEE/HE node
ratio and ran typical queries for each ratio. Figure 11(a)
demonstrates that 100% TEE node settings resulted in signif-
icantly lower latency than other ratios. Furthermore, com-
pared to range query performance in Figure 11(b), the latency
gap between pure TEE (100% TEE nodes) settings and other
ratios for point queries in Figure 11(a) is smaller due to the
more efficient execution of point queries in HoTEE, as also
demonstrated in Figure 9 and Figure 11.
Our sensitivity study demonstrates a significant point:

although HoTEE has been much more efficient than all base-
lines and achieves logarithmic search complexity, there is
still an efficiency gap between TEE and HE. It is noteworthy
that HoTEE aims not to close the gap but to bridge it, to let
mutiple parties with distinct trust on TEE/HE to collabora-
tively answer queries with favorable plaintext irreversible
guarantee (Table 1, explained in §3.2).

12

0% HE 50% HE 100% HE
Ratio of TEE and HE nodes

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

La
te

nc
y

(m
s)

HoTEE
CryptDB
HElib

0.29
0.54 0.63

(a) Point Query

0% HE 50% HE 100% HE
Ratio of TEE and HE nodes

0.0

0.4

0.8

1.2

1.6

La
te

nc
y

(m
s)

N
ot

 S
up

po
rt

ed

N
ot

 S
up

po
rt

ed

N
ot

 S
up

po
rt

ed

HoTEE
CryptDB
HElib

0.46

0.87 0.89

(b) Range Query
Figure 11. Performance sensitivity of running different ratios of
TEE and HE nodes in SQL instances distributedly.

5.4 Robustness to Integrity Breaches
The above evaluation considers a fault-free scenario with no
manipulation or omission of query results. However, ensur-
ing the integrity of query results in an outsourced database is
critical, and query authentication is necessary (§3.2). Thanks
to HoTEE’s MFT index that uses recursive Merkle-tree style
construction with MAC-on-bias and boundary checks (§4.2),
HoTEE enables such feature compared to its baselines. We
ran TPC-C in SQL instances and simulated integrity breaches
through random manipulation, omission, or version rollback
of query messages (including both forward messages to the
proxy and backward query results). HoTEE achieved a 100%
detection rate of any integrity breaches.

5.5 Discussion and Limitation
Dismissing an alternative design.Onemay think of using
solely monotonic bias with ORE for building an encrypted in-
dex, which poses two problems. Firstly, it restricts the query
functionality to range queries, which is similar to CryptDB’s
OPE solution. Secondly, it lacks query authentication ca-
pabilities. In contrast, HoTEE enables both data confiden-
tiality with plaintext irreversibility and query integrity in
distributed outsourced databases.
Limitations. HoTEE has two limitations. Firstly, HoTEE
does not protect the order of ciphertexts on databases, which
is an inherent issue with any practical encrypted databases
that aim to support range queries by not using expensive
oblivious algorithms [3, 37, 39]. Secondly, HoTEE’s MFT in-
dex is built on a single searchable attribute. For databases
that search over multiple attributes (e.g., graph databases [7,
24]), HoTEE handles only disjunctive queries by search-
ing on MFTs of each attribute independently. However, for
conjunctive queries, MFT has to be integrated with multi-
dimensional indexes (e.g., k-d tree [55]), and we leave this
interesting direction for future work.

6 Conclusion
We present HoTEE, the first unified query system that can
support general queries on heterogeneous EDB (i.e., simulta-
neously enabling HE and TEE nodes) from multiple parties
with logarithmic search complexity, via a newMFT confiden-
tial index abstraction. By searching on MFTs and securely
aggregating searched data, HoTEE creates a unified query

system that bridges the silos between TEE and HE data,
and facilitates multiple parties jointly answer queries us-
ing heterogeneous EDB nodes. Extensive results on both
SQL and NoSQL instances show that HoTEE is general,
extensible, and highly efficient compared to two notable
EDBs. HoTEE is open-sourced and its code is released on
github.com/osdip281/HoTEE.

References
[1] [n. d.]. Jeddak project. ([n. d.]). https://github.com/bytedance-jeddak/

jeddak
[2] 1997. Web resource: https://en.wikipedia.org/wiki/Ciphertext indistin-

guishability (1997).
[3] Edgeless Systems GmbH. 2022. [n. d.]. EdgelessDB Official Website.

Retrieved March 1, 2022. https://www.edgeless.systems/products/
edgelessdb.

[4] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
2004. Order preserving encryption for numeric data. In Proceedings

of the 2004 ACM SIGMOD international conference on Management of

data. 563–574.
[5] Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi, and Trinabh

Gupta. 2022. Pantheon: Private Retrieval from Public Key-Value Store.
Proceedings of the VLDB Endowment 16, 4 (2022), 643–656.

[6] Werner Almesberger et al. 1999. Linux network traffic con-
trol—implementation overview.

[7] Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database
models. ACM Computing Surveys (CSUR) 40, 1 (2008), 1–39.

[8] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro,
Nitish Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Don-
ald Kossmann, Nikolas Ogg, et al. 2020. Azure SQL database always
encrypted. In Proceedings of the 2020 ACM SIGMOD International Con-

ference on Management of Data. 1511–1525.
[9] David W Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt

Nielsen, Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright.
2018. From keys to databases—real-world applications of secure multi-
party computation. Comput. J. 61, 12 (2018), 1749–1771.

[10] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart.
2008. Deterministic encryption: Definitional equivalences and con-
structions without random oracles. In Annual International Cryptology

Conference. Springer, 360–378.
[11] Burton H Bloom. 1970. Space/time trade-offs in hash coding with

allowable errors. Commun. ACM 13, 7 (1970), 422–426.
[12] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdi-

ger Kapitza. 2017. Rollback and forking detection for trusted execution
environments using lightweight collective memory. In 2017 47th An-

nual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). IEEE, 157–168.
[13] Rupali Chopade and Vinod Pachghare. 2020. MongoDB indexing for

performance improvement. In ICT Systems and Sustainability. Springer,
529–539.

[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryp-
tology ePrint Archive (2016).

[15] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks,
and Raluca Ada Popa. 2021. Snoopy: Surpassing the scalability bot-
tleneck of oblivious storage. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles. 655–671.
[16] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion

Stoica. 2020. DORY: An encrypted search system with distributed
trust. In 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20). 1101–1119.
[17] Yarkın Doröz, Gizem S Çetin, and Berk Sunar. 2016. On-the-fly homo-

morphic batching/unbatching. In International Conference on Financial

13

github.com/osdip281/HoTEE
https://github.com/bytedance-jeddak/jeddak
https://github.com/bytedance-jeddak/jeddak
 https://www.edgeless.systems/products/edgelessdb
 https://www.edgeless.systems/products/edgelessdb

Cryptography and Data Security. Springer, 288–301.
[18] Fermat. 1997. Fermat’s Last Theorem. Web resource:

https://en.wikipedia.org/wiki/Fermat27sLastTheorem (1997).
[19] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P Smart. 2012. Ring

switching in BGV-style homomorphic encryption. In International

Conference on Security and Cryptography for Networks. Springer, 19–
37.

[20] Vipul Goyal, Adam O’Neill, and Vanishree Rao. 2011. Correlated-input
secure hash functions. In Theory of Cryptography Conference. Springer,
182–200.

[21] James L Hieronymus. 1993. ASCII phonetic symbols for the world’s
languages: Worldbet. Journal of the International Phonetic Association
23 (1993), 72.

[22] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic compar-
ison operations for BGV and BFV. Proceedings on Privacy Enhancing

Technologies 2021, 3 (2021), 246–264.
[23] Scott R. Intel. [n. d.]. SGX 2.0 (scalable SGX). ([n. d.]). https://github.

com/intel/linux-sgx/issues/899
[24] Borislav Iordanov. 2010. Hypergraphdb: a generalized graph data-

base. In International conference on web-age information management.
Springer, 25–36.

[25] Emilia Käsper and Peter Schwabe. 2009. Faster and timing-attack resis-
tant AES-GCM. In International Workshop on Cryptographic Hardware

and Embedded Systems. Springer, 1–17.
[26] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta,

Mark Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure
multi-party computation meets machine learning. Advances in Neural

Information Processing Systems 34 (2021), 4961–4973.
[27] Scott T Leutenegger and Daniel Dias. 1993. A modeling study of the

TPC-C benchmark. ACM Sigmod Record 22, 2 (1993), 22–31.
[28] Dong Li, Xiaofeng Liao, Tao Xiang, Jiahui Wu, and Junqing Le. 2020.

Privacy-preserving self-serviced medical diagnosis scheme based on
secure multi-party computation. Computers & Security 90 (2020),
101701.

[29] Rundong Li, Mirek Riedewald, and Xinyan Deng. 2018. Submodularity
of distributed join computation. In Proceedings of the 2018 International

Conference on Management of Data. 1237–1252.
[30] Dongxi Liu and Shenlu Wang. 2012. Programmable order-preserving

secure index for encrypted database query. In 2012 IEEE Fifth Interna-

tional Conference on Cloud Computing. IEEE, 502–509.
[31] Murali Mani, Kinnari Shah, and Manikanta Gunda. 2013. Enabling

secure database as a service using fully homomorphic encryption:
Challenges and opportunities. arXiv preprint arXiv:1302.2654 (2013).

[32] AB MySQL. 2001. MySQL.
[33] National Institute of Standards and Technology (NIST). 2015. SHA-3

Standard: Permutation-Based Hash and Extendable-Output Functions.
Federal Information Processing Standards Publication 202.

[34] Seog-Chan Park and Moon-Seog Lee. 2015. A survey of access control
models in database management systems. Journal of Computing Science

and Engineering 9, 2 (2015), 57–78.
[35] Proteet Paul, Tushar Gupta, and Shamik Sural. 2022. Poster: ASQL-

Attribute Based Access Control Extension for SQL. In Proceedings of

the 27th ACM on Symposium on Access Control Models and Technologies.
259–261.

[36] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2016. Arx: A
Strongly Encrypted Database System. IACR Cryptol. ePrint Arch. 2016
(2016), 591.

[37] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. 2011. CryptDB: protecting confidentiality with
encrypted query processing. In Proceedings of the twenty-third ACM

symposium on operating systems principles. 85–100.
[38] Behandelt PostgreSQL. 1996. PostgreSQL. Web resource: http://www.

PostgreSQL. org/about (1996).

[39] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB:
A secure database using SGX. In 2018 IEEE Symposium on Security and

Privacy (SP). IEEE, 264–278.
[40] Addanki Purna Ramesh, AVN Tilak, and AM Prasad. 2013. An FPGA

based high speed IEEE-754 double precision floating point multiplier
using Verilog. In 2013 International Conference on Emerging Trends

in VLSI, Embedded System, Nano Electronics and Telecommunication

System (ICEVENT). IEEE, 1–5.
[41] Marc Stevens, Pierre Karpman, and Thomas Peyrin. 2017. The first

collision for full SHA-1. In 2017 IEEE Symposium on Security and Privacy

(SP). IEEE, 570–583.
[42] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Build-

ing enclave-native storage engines for practical encrypted databases.
Proceedings of the VLDB Endowment 14, 6 (2021), 1019–1032.

[43] Chia-Che Tsai, Donald E Porter, andMona Vij. 2017. {Graphene-SGX}:
A Practical Library {OS} for Unmodified Applications on {SGX}. In
2017 USENIX Annual Technical Conference (USENIX ATC 17). 645–658.

[44] Eugene Tsyrklevich and Bennet Yee. 2003. Dynamic detection and
prevention of race conditions in file accesses. In 12th USENIX Security

Symposium (USENIX Security 03).
[45] Stephen Lyle Tu, M Frans Kaashoek, Samuel R Madden, and Nickolai

Zeldovich. 2013. Processing analytical queries over encrypted data.
(2013).

[46] Harshavardhan Unnibhavi, David Cerdeira, Antonio Barbalace, Nuno
Santos, and Pramod Bhatotia. 2022. Secure and Policy-Compliant
Query Processing on Heterogeneous Computational Storage Architec-
tures. In ACM SIGMOD/PODS International Conference on Management

of Data 2022.
[47] XiaoyunWang andHongbo Yu. 2005. Breaking a new version of NMAC

and HMAC using preimage attacks on PB and KECCAK. Advances in
Cryptology–EUROCRYPT 2005 (2005), 1–16.

[48] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. 1993. GRPC: A commu-
nication cooperation mechanism in distributed systems. ACM SIGOPS

Operating Systems Review 27, 3 (1993), 75–86.
[49] Yilei Wang and Ke Yi. 2021. Secure yannakakis: Join-aggregate queries

over private data. In Proceedings of the 2021 International Conference

on Management of Data. 1969–1981.
[50] Zhiyong Wang, Ruijie Hu, Tao Yu, and Chunyong Chen. 2019. De-

sign and Implementation of a Database Client Blacklist Mechanism.
In 2019 International Conference on Computing, Communications and

Intelligence Systems (ICCCIS). IEEE, 71–74.
[51] Pengfei Wu, Jianting Ning, Jiamin Shen, Hongbing Wang, and Ee-

Chien Chang. [n. d.]. Hybrid Trust Multi-party Computation with
Trusted Execution Environment. ([n. d.]).

[52] Yu Xia, Xiangyao Yu, Matthew Butrovich, Andrew Pavlo, and Srinivas
Devadas. 2022. Litmus: Towards a Practical Database Management
System with Verifiable ACID Properties and Transaction Correctness.
In Proceedings of the 2022 International Conference on Management of

Data, Philadelphia, PA, USA. 12–17.
[53] Statistics Canada. Zachary Zanussi. [n. d.]. Privacy Preserving Tech-

nologies Part Two: Introduction to Homomorphic Encryption. ([n. d.]).
https://www.statcan.gc.ca/en/about/statcan#a7

[54] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. 2022. {XRP}:{In-Kernel} Storage Functions with
{eBPF}. In 16th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 22). 375–393.
[55] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. 2008. Real-time

kd-tree construction on graphics hardware. ACM Transactions on

Graphics (TOG) 27, 5 (2008), 1–11.
[56] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and

Feifei Li. 2021. Veridb: An sgx-based verifiable database. In Proceedings

of the 2021 International Conference on Management of Data. 2182–
2194.

14

https://github.com/intel/linux-sgx/issues/899
https://github.com/intel/linux-sgx/issues/899
https://www.statcan.gc.ca/en/about/statcan#a7

A Appendices
A.1 Primitives for Encrypted Databases
Intel SGX. SGX [14] is a pervasively used hardware feature
that provides a secure execution environment called enclave,
where data and code execution cannot be seen or tampered
with from outside. SGX has been widely adopted in recent
encrypted databases [3, 39, 42] because (1) SGX provides
sophisticated API including sealing and attestation, and (2)
the latest SGX 2.0 greatly expands enclave memory capacity
(up to 512GB/CPU [23]) to fit memory-intensive applications
including databases [42].
Homomorphic BGV. To avoid trusting one TEE hardware
vendor, some organizations are seeking a cryptographic root-
of-trust from homomorphic encryption (HE), and are willing
to pay for the deficiencies of using HE-based solutions, espe-
cially fully HE schemes like BGV [19]. BGV allows arbitrary
aggregation (e.g., sum, avg) on encrypted data (with noises)
without requiring a secret key for decryption, and the com-
putation result can be fully revealed by the owner of the
secret key [19]. BGV uses key switch algorithm to reduce ci-
phertext’s noises, which is leveraged by HoTEE to aggregate
multi-party data encrypted by distinct secret keys (§4.3).

A.2 HoTEE’s Storage Model
Recall the aforementioned data model, we assume a table T
with n columns CL = {c0, c1, ..., cn−1} and is indexed on the
primary key c0 (i.e., PK = c0). A record r can be depicted
as [E(k), E(v1), ..., E(vn−1)] where k is the value for c0. The
storage engine should provide the following API:
• EqualGet(E(k)): Retrieve the row r from T given a key k .
• RangeGet(E(ks),E(ke)): Retrieve all rows {r } fromT whose
keys are between E(ks) and E(ke).
• FullGet(): Retrieve all rows {r } from T .
• Put(r): Insert (or update) a row r to T if its key k is non-
existent (or existent).
• Delete(E(k)): Delete the row r from T given a key k .

A.3 Generality of HoTEE
Is HoTEE general? We illustrate HoTEE’s generality by
discussing two HoTEE’s core components: MFT confidential
index and SDA protocol. First, MFT is general to database
types including both relational and NoSQL databases, be-
cause we assume a widely-adopted unclustered architecture
where index and other components (e.g., storage) are decou-
pled (§3.1) and MFT only substitutes the original index; MFT
is also general to attribute types (integer, real value, and
string): as MFT so far works on the integer attribute, we can
transform real values into integers using IEEE 754 floating
point number [40] and transform string values using ASCII
character [21] by encoding any length-l ASCII string with
integers [0, 27·l − 1]. Second, SDA is general as well, because
SDA uses the generic MFT for searching, and aggregates data

with key switch, a generic tool in common HE algorithms to
reduce HE data’s cumulative noises [19, 22].

A.4 Construction algorithm

Algorithm 3: MFT Index Construction (Client side)
1 Struct {
2 Rangefilter myFilter ▷ Input from Algo 1
3 Ctx value ▷ TEE or HE ciphertext
4 Node pn ▷ Parent node
5 } MFTNode;
6 Function CreateLeaf() do

▽ Initialize bottom-layer MFTNodes
7 ...
8 r eturn leaf []
9 Function CreateInner(Nodei , Nodej) do
10 (inner .lef t , inner .r iдht) ← (Nodei , Nodej)
11 (Nodei .pn, Nodej .pn) ← inner

▽ Union of child nodes’ ranges
12 inner .rnд ← Nodei .rnд ∪ Nodej .rnд
13 r eturn inner
14 Function CreatMFTIndex() do
15 le[]← CreateLeaf(), in[]← ∅, ptr ← 0

▽ Pair-wise inner node construction
16 while ptr < le .lenдth do
17 if ptr = le .lenдth − 1 then
18 in .insert(CreateInner (le[ptr],le[ptr-1].pn))
19 else
20 in .insert(CreateInner (le[ptr],le[ptr+1]))
21 ptr ← ptr + 2

▽ Bottom-up MFT construction
22 while in .lenдth > 2 do
23 n[]← ∅, ptr ← 0
24 while ptr < in .lenдth do
25 if ptr = in .lenдth − 1 then
26 n .insert(CreateInner (in[ptr],in[ptr-1].pn))
27 else
28 n .insert(CreateInner (in[ptr],in[ptr+1]))
29 ptr ← ptr + 2
30 in ← n

▽ Entry of MFT confidential index
31 r eturn root ← CreateInner(in[0], in[1])

A.5 Key switch Syntax
Specifically, key switch (KS) consists of a tuple of algorithms
KS = (CtxGen, Enc, Switch) with the following syntax:
• KS.CtxGen→ ctx . Generate a ciphertext ctx in the form
of (a,A), in which A = a ·SA+m+te mod q. SA is the secret
key owned by client A,m is the plaintext, a is a random
parameter, other variants are modular parameters in HE.
• KS.Enc(S,S’)→ tkn. Enc encrypts key S using a new key
S ′ and outputs a token tkn. tkn takes the form of (a*, A*)
= (a′, a′ · S ′ + S + te mod q), a′ is a random parameter.
• KS.Switch(ctx,tkn)→ ctx ′. By using tkn, Switch switches
the encryption key of ctx from S to S ′ and outputs a new
ciphertext nctx = (−a · a∗, A − a · A∗).

A.6 Implementation Details
We implemented HoTEE with 5021 lines of C++ code on
the CryptDB codebase [37], a modular framework for evalu-
ating distributed encrypted databases. All of HoTEE’s pro-
tocol messages (1 , 3) were implemented with asynchro-
nous RPC calls [48], and we instantiated messages using
AES [25]. We modified CryptDB proxy with around 200

15

lines of Graphene [43] code for enclave instantiation and
code wrapping (in pr.manifest), and spawned two enclave
threads: one (ts_thread) for profiling, transforming queries,
and searching on MFT indexes to locate query-dependent
databases (2); the other one (ds_thread) runs SDA pro-
tocol to generate and fetch key switch tokens (§4.3), and
aggregates multi-party encrypted data with the tokens (4).
Case study. To understand whether HoTEE can benefit real
world databases, we built two HE databases on MySQL [32]
and MongoDB’s default KV backend WiredTiger [13], by
replacing MySQL’s default B+-tree and WiredTiger’s B-tree
with MFT confidential index. Especially, since WiredTiger
maintains an LRU cache for queries’ entire B-tree traversal

path including both inner and leaf nodes’ pages, to comply
with such caching semantics, HoTEE’s search operations de-
scribed in the previous section (5) also returns all traversed
MFT pages so that WiredTiger can cache them.
Optimization. First, we took a batching strategy [17] on
homomorphic encryption/decryption and key switching to
maximize the throughput of HE databases. Second, we fine-
tuned theWiredTiger’s LRU cache size to maximize cache hit
ratio while keeping a large fraction of the available memory
for MFT indexes for fast data retrieval. Last, we constructed
MFT’s rangefilter nodes by storing only the "1" bits and
skipping the "0" bits to keep larger working sets of MFT
indexes in memory and reduce time-consuming disk I/O.

16

	Abstract
	1 Introduction
	2 Background
	2.1 Encrypted Databases on the Cloud
	2.2 Use Cases
	2.3 Preliminaries

	3 Overview
	3.1 System Model
	3.2 Threat Model and Guarantees
	3.3 HoTEE's Workflow Overview

	4 Protocol Description
	4.1 A Preliminary Subfilter-based Index
	4.2 HoTEE's Complete Confidential Index
	4.3 A Unified Query System Leveraging MFT
	4.4 Complexity and Security Analysis

	5 Evaluation
	5.1 End-to-end Performance
	5.2 Scalability
	5.3 Sensitivity Study on Heterogeneity
	5.4 Robustness to Integrity Breaches
	5.5 Discussion and Limitation

	6 Conclusion
	References
	A Appendices
	A.1 Primitives for Encrypted Databases
	A.2 HoTEE's Storage Model
	A.3 Generality of HoTEE
	A.4 Construction algorithm
	A.5 Key switch Syntax
	A.6 Implementation Details

