
BIRDB: A Metadata-secure and High-performance Encrypted
Database using Compact Encrypted Search

Anonymous Submission #xxx

Abstract—The growing concerns about the confidentiality
of data outsourced to untrusted cloud storage have prompted
notable progress in Encrypted Databases (EDB). EDBs store
encrypted data and allow for searches as traditional insecure
databases while hiding the metadata of access patterns during
searches. However, achieving both efficient encrypted search and
metadata protection remains a challenge. Some EDBs construct
cryptographic indexes on property-preserving encrypted data to
enable logarithmic searches, but their performance downgrades
as the index size substantially increases and also disregard
metadata protection. Other approaches resort to scanning the
entire dataset to hide metadata, leading to significant overhead
during encrypted searches.

We present BIRDB, the first efficient and compact EDB with
metadata protection. At the core of BIRDB lies a new boolean
information retrieval technique that structures the database in
a logarithmic-complexity search data structure (index) and per-
forms the search obliviously over the index. The boolean nature
of the index provides two crucial advantages: (1) lossless index
compression through linear approximation and (2) seamless inte-
gration with efficient private information retrieval protocols. This
integration allows computationally expensive query-independent
computations to be shifted to an offline phase, leading to sublinear
computation during the query-specific online phase, all while
ensuring metadata protection. Extensive evaluations show that
BIRDB reduced up to 40.7% query latency and achieved up to
45x higher throughput and provided robust metadata protection
compared to existing notable approaches.

I. INTRODUCTION

The popularity of cloud computing has driven widespread
adoption of cloud storage services such as DropBox [28] and
Onedrive [71]. However, these services have raised grave secu-
rity concerns due to their processing of user data in plaintext.
Recent incidents, including a data breach exposing the personal
information of 237,000 US government employees [1], the
leak of Samsung’s software source code when the employees
uploaded it to ChatGPT [7], and accusations against TikTok
for compromising the data of over 150 million US citizens
stored in the cloud [8], highlight the serious data security risks
associated with cloud storage.

Recently, Encrypted Databases (EDBs) [24], [47], [58],
[68] have emerged as a dependable solution for enhancing the
security of cloud storage. EDBs store user data in an encrypted
form without knowing the decryption keys, ensuring data con-
fidentiality even against privileged database administrators and
external attackers (i.e., adversaries). To enable efficient query
processing on the encrypted data, EDBs require efficient and
compact search indexes, comparable to the binary search tree
(BST) used in traditional insecure databases [50]. Furthermore,
EDBs must employ oblivious algorithms to protect search
metadata, preventing adversaries from extracting sensitive in-
formation from index access footprints during searches [21].

Figure 1 illustrates how an adversary can exploit search
access patterns to extract plaintext information and emphasizes

Lookup ("Cat")

EDB

Index

EDB

Index

Dog

EDB

Index

EDB

Index

A B

C

" "= "cat"

D

dummy

" " = ?
Obliv.

Lookup ("Dog")

Lookup (" ") Lookup (" ")

Cat

Fig. 1: Compared to an EDB that uses only end-to-end encryption
shown in A∼C, a metadata-hiding EDB in D disguises intended
index operations with dummy operations, preventing adversaries from
learning the metadata (i.e., index access footprints during searches).

the advantages of metadata protection [21], [24]. Consider
an EDB that employs a BST search index, responsible for
mapping encrypted keywords to their corresponding satellite
data (e.g., address). The adversary passively monitors a series
of plaintext queries and their associated index traversal paths
(A∼B). By repeating this process, the adversary can deduce the
keyword associated with each index path. Consequently, when
a user submits a confidential query with an encrypted search
keyword (‘?’ in C), the adversary can infer the keyword based
on the specific index node accessed. Nevertheless, an EDB
implementing metadata protection utilizes oblivious algorithms
that include dummy accesses (as depicted in D), effectively
concealing the actual search access patterns and mitigating the
vulnerability associated with search pattern exposure.

A commonly used approach is Oblivious RAM (ORAM),
which is typically structured as a BST and employs dummy
accesses to cryptographically conceal the actual path traversed
during searches [27], [31], [64]. The utilization of a tree-based
data structure allows ORAM to achieve a polylogarithmic
asymptotic complexity relative to the size of the database. Such
a theoretically low time complexity is comparable to that of
BSTs used in insecure databases.

Unfortunately, ORAM is not suitable for our particular
context due to two main reasons. Firstly, the one-phase design
of ORAM requires repeatedly executing the entire set of
oblivious algorithms for each online search [25], [56], [64].
Secondly, ORAM’s cryptographic nature renders it uncom-
pressible while maintaining searchability. This is due to the in-
herent randomness introduced during cryptographic operations.
Consequently, when dealing with a large-scale ORAM-based
index containing a significant amount of data, a considerable
portion of it needs to be transferred from fast primary storage

to slower secondary storage [24], [29]. This reliance on costly
I/O operations to secondary storage becomes a bottleneck and
leads to severe performance degradation (proved in §VI-A).

As an alternative to ORAM, OO-PIR [47] proposes a two-
phase private information retrieval (PIR) design. It prepro-
cesses the database into multiple chunks, where each online
query retrieves a random chunk to conceal the specific item be-
ing fetched. While OO-PIR moves costly oblivious operations
(chunk division) to an offline phase, it still requires storing the
entire set of chunks and linearly scanning each chunk during
online queries. HELibDB [22] eliminates the need for index
construction by utilizing Fermat’s Little Theorem [70] to assess
the equivalence of encrypted data, thus achieving compactness
compared to OO-PIR. However, such direct evaluation requires
linearly scanning all encrypted data thus hampers performance.

To enhance encrypted search efficiency and expedite the
aforementioned metadata-hiding solutions, one approach is
to utilize property-preserving encryption algorithms [9], [15]
to construct cryptographic indexes on the encrypted data.
These algorithms preserve the determinism and order of the
encrypted data, thereby enabling the construction of BSTs with
logarithmic search complexity. However, this cryptographic
index is not suitable due to its incompatibility with the
PIR process in existing metadata-hiding solutions. Moreover,
the cryptographic index suffers from the same limitation of
uncompressibility, further restricting its performance.

Overall, the challenge of striking a balance between effi-
ciency (logarithmic search complexity) and compactness (com-
pressible encrypted index) while ensuring metadata protection
in an EDB remains an open problem. We believe the root cause
is that existing studies use mutually isolated cryptographic
primitives to address individual challenges, rather than seeking
a unified solution that can rule all aspects.

Drawing inspiration from Boolean Information Retrieval
protocols developed for document retrieval [11], [43], we made
a key observation that the boolean form of encrypted data can
provide significant membership information, which can assist
in achieving all three desired properties simultaneously. Firstly,
the boolean form enables a new encrypted search concept
by replacing traditional numerical comparisons in BSTs with
membership tests. Secondly, the boolean characteristic of the
data allows for the use of linear approximation to compress the
encrypted indexes within constant space occupancy [40], [44],
overcoming the inherent uncompressibility of cryptographic
indexes in prior work. Lastly, the boolean form of the data
aligns well with the two-phase PIR process [34], [47], where
the database is preprocessed, and users ultimately recover
results using boolean operations.

This paper presents BIRDB1, the first encrypted database
with metadata protection that achieves efficiency and com-
pactness. The key weapon of BIRDB is a new compressible
encrypted index called BINDEX. Unlike prior cryptographic
approaches that build uncompressible indexes due to random
noise introduced during encryption, BINDEX utilizes efficient
one-way functions (OWF) such as SHA-256 [33]. These OWFs
transform the data into irreversible ciphertexts in boolean form
and then BIRDB organizes them in a membership-preserving

1BIRDB stands for Boolean Information Retrieval based EDB.

BIRDB.Lookup (" ")

Boolean Rep.

1 0 1 1 0

Crypto hash (#/str/...)

💥

Lossless Compression

Linear Approximation Correction
-1
-2
+1
+1

+

Constant time & space
Preprocessed oblivious search

Exponential
Growth

Fig. 2: BIRDB’s fundamental concept revolves around leveraging
boolean information to construct a searchable and compact index that
incorporates an oblivious search protocol.

data structure. The membership information is propagated from
the leaf to the root, enabling logarithmic search, while the
boolean nature of the index allows for compressibility.

Figure 2 illustrates the new encrypted search method em-
ployed by BINDEX, showcasing its construction and search
process. During the index construction, each item in the
database undergoes a transformation using OWFs, resulting
in a set of boolean-form cipher identifiers. These identifiers
are positioned at the leaf layer of the data structure. BINDEX
is then constructed by recursively combining these identifiers
in a Merkle tree fashion, where each inner node represents the
union of its child identifiers (§IV-A). This process ensures that
the membership information of items is propagated up to the
root of the tree. During encrypted searches, BINDEX employs
a membership testing approach in each node to determine the
appropriate tree path to traverse. This enables binary encrypted
search by testing the membership of identifiers, mimicking the
behavior of BSTs without the need for numerical comparisons
on plaintext values.

A key performance challenges faced by BIRDB is its
space efficiency, primarily attributed to its unique leaf-to-
root membership propagation mechanism. This mechanism,
which enables logarithmic-complexity encrypted searches as
mentioned earlier, amplifies the space occupancy of BINDEX.
This is due to the fact that inner nodes in BINDEX are required
to store the membership information of all their child nodes.
As a result, the size of each inner node grows exponentially,
resulting in a significant increase in the overall index size and
adversely impacting the performance of BINDEX.

To address the space efficiency challenge of BINDEX while
maintaining its searchability, we draw inspiration from recent
advancements in the field of linear approximation models in
the database community [39], [40], [44]. Our key idea is to
use offsets to represent each giant BINDEX node in boolean
form. These offsets are then compressed by approximating the
entries in the offset arrays using succinct linear models. This
allows us to achieve compressed index nodes with constant
space occupancy, as only a few slopes and intercepts in
the models need to be stored (§IV-B). By employing this
compression technique in combination with the logarithmic
search complexity of BINDEX, we can significantly reduce
the performance penalty caused by the expanded index and
enable BIRDB’s queries to run at high performance without
compromising confidentiality.

Moreover, the boolean nature of BINDEX is compatible
with and can be seamlessly integrated into two-phase PIR

2

protocols. In our implementation, BINDEX is constructed and
deployed on two servers: a master server and a replica server.
The replica performs database preprocessing to generate auxil-
iary hints, which are then used by the master server during the
online phase to provide efficient responses to user queries with
sublinear computation and communication. This integration is
seamless because the preprocessing step also relies on boolean
operations (§IV-C). The integration between BINDEX and the
PIR protocol is mutually beneficial: BINDEX accelerates the
PIR process for encrypted searches, while the PIR protocol
preserves the metadata confidentiality during searches.

We implemented BIRDB on OO-PIR’s codebase [23].
BIRDB’s modular architecture allows for independent deploy-
ment of index and storage optimizations, providing flexibility
and transparency. To evaluate its performance, we conducted
a comparative analysis of BIRDB against an uncompressed
version (UC-BIRDB), HElibDB [22], and OO-PIR [47], which
are two efficient metadata-hidng EDBs, using the same NoSQL
workload [77]. Evaluation shows that:

• BIRDB is efficient: BIRDB achieved 5.9x lower latency
and 45x higher throughput compared to HElibDB. BIRDB
achieved 40.7% lower latency and 3.2x higher throughput
compared to OO-PIR. The compressed BINDEX occupied
approximately 1037x less space than UC-BIRDB, resulting in
further reduced latency by 1.15x. These performance gains can
be attributed to the low complexity and compactness (§VI-A).

• BIRDB is scalable: BIRDB’s query latency scales logarith-
mically with an increasing size of the database (§VI-B).

• BIRDB is lossless: BINDEX successfully performed en-
crypted searches without any errors based on both empirical
evaluations and theoretical analysis presented in §IV-B.

Our main contribution is BINDEX, the first efficient and
compact index designed for encrypted search. BIRDB makes
the first effective attempt to utilize boolean information gen-
erated by one-way functions to enable the construction of a
searchable and compressible index. Furthermore, it seamlessly
integrates with a highly efficient two-phase PIR protocol that
also preprocesses the database using boolean information, all
within a unified system. BIRDB demonstrates considerable
potential for deployment in various safety-critical applications,
such as privacy-preserving video streaming [57], [75], pass-
word manager [30], recommendation [35], [61], and anony-
mous messaging [37], [60].

II. BACKGROUND

In this section, we aim to highlight the importance of
meeting three key properties - searchability, compactness, and
metadata protection - in encrypted databases (compared in
Table I). Understanding the significance of these properties
will provide motivation for our design of BIRDB.

A. Toward efficient server-side search

In response to growing security concerns about data leak-
age, enterprises like Keybase [5], PreVeil [6], SpiderOak [2],
Sync [3], and Tresorit [4] have emerged, offering encrypted
storage services to ensure user data confidentiality. These
companies have expressed a need for server-side search func-
tionality on encrypted data, in a way similar to conventional

System Data Metadata Sublinear Compact General
Confidentiality Security Complexity Index Purpose

MySQL [50] 7 7 3 3 3
CryptDB [58] 3 7 3 7 3
HElibDB [22] 3 3 7 3 3
Dory [24] 3 3 7 7 7
OO-PIR [47] 3 3 7 7 3
Titanium [47] 3 3 7 7 3
BIRDB 3 3 3 3 3

TABLE I: Characterization of representative EDBs.

plaintext databases like MySQL [50]. However, none of these
companies currently support server-side search, as their de-
velopment efforts have been hindered by performance or the
disclosure of search access patterns.

One straightforward yet inefficient way to enable search on
encrypted data is to download the entire database. However,
this approach is impractical due to the significant bandwidth
consumption and user-side storage resources required. Thus
although it provides the highest level of security, no existing
industrial solution utilizes this approach.

To enable efficient server-side search on encrypted data,
extensive academic research has explored the use of specific
cryptographic tools, such as property-preserving encryption, as
seen in the case of CryptDB [58]. The core concept behind this
approach is to preserve the determinism and maintain the order
of encrypted data, thereby allowing for the direct construction
of an index (typically a BST [20]) on top of the encrypted data
with logarithmic search complexity.

The need for compacting index. Despite extensive efforts to
achieve efficient search performance, evaluations have shown
that the actual performance often falls short of theoretical
(i.e., logarithmic) expectations. The primary reason for this
discrepancy is that the performance bottleneck does not lie in
the binary search. Instead, it is the I/O operations to secondary
storage that significantly degrade the overall performance. This
is particularly true when dealing with substantial data volumes
that cannot be indexed and fit within the limited main memory,
compounded by the fact that encryption algorithms typically
expand ciphertext size linearly [10], [66].

Therefore, in the context of EDB, achieving high per-
formance necessitates not only sublinear (logarithmic) search
complexity but also effective compression techniques. By
ensuring sublinear search complexity, the search operations can
be executed efficiently, while compression helps mitigate the
impact of I/O operations and reduces the storage requirements.

B. Toward efficient metadata protection

Private Information Retrieval (PIR). The initial concept
of PIR was introduced by Chor et al. [51], allowing users
to retrieve specific items from an untrusted server-managed
database without revealing the accessed object. PIR protocols
aim to minimize communication costs, achieving sublinear
complexity relative to the database size. Modern PIR de-
ployment models include multi-server PIR [26], [42], [45],
[46], where the database is replicated across non-colluding
servers for enhanced fault tolerance. Alternatively, single-
server PIR protocols [48], [49], [54] are computationally more
demanding but avoid non-collusion assumptions through cryp-
tographic hardness assumptions. These advancements provide

3

a range of options for secure and private information retrieval,
considering efficiency, security assumptions, and deployment
requirements.

Oblivious RAM (ORAM) is a traditional PIR technique
known for concealing access patterns during interactions with
untrusted servers [55], [65], however, it is not suitable for our
setting due to its impractical performance penalty. ORAM pro-
tocols achieve access pattern obfuscation through techniques
like oblivious data shuffling and path encryption. Researchers
have also proposed various ORAM variants like Titanium [21]
and Dory [25] to improve performance and scalability while
preserving data privacy [17], [32], [59], [63], [64]. However,
ORAM-based techniques still suffer from the drawback of
processing the entire database with linear computation for
every query, resulting in significant performance penalties.

Two-phase PIR on the boolean information. Many research
efforts have been put on improving the performance of ORAM
by introducing preprocessing techniques [14], [23], [62], [76].
Preprocessing involves shifting the inevitable PIR computation
to a query-independent offline phase and generating auxiliary
data or hints along the way. This approach aims to make
the computational cost of online query processing, with the
assistance of these hints, sublinear to the database size.

Two recent PIR protocols, namely the Corrigan-Gibbs and
Kogan scheme (CK) [23], and the Shi, Aqeel, Chandrasekaran,
and Maggs scheme (SACM) [62], operate on the boolean
information to enable a two-phase design. Notably, the CK
protocol [23] presents a two-server PIR construction that stores
O(
√
n) bits at the user and achieves O(

√
n) server computa-

tion for online queries. The fundamental idea behind CK is
the reflexivity of XOR operations. The CK protocol divides
the database into random chunks, and the user preserves a
preprocessed hint h = p ⊕ s, where p represents the desired
value to be queried and s is obtained by querying a random
chunk of the database. Through this approach, the user can
ultimately obtain p = h⊕ s using its hint and queried random
result, with correctness guaranteed by the reflexivity property
(i.e., p⊕ s⊕ s = p).

C. Opportunities

Based on the survey results discussed above, we have
identified several opportunities to address the challenge of
practical yet secure encrypted search:

• Traditional cryptographic approaches are not capable of
simultaneously achieving both searchability and compactness.
Hence, there is a strong need for an alternative approach that
offers a more flexible and practical index design, even if it
entails sacrificing some degree of confidentiality. This trade-
off is crucial to ensure the compactness of the encrypted search
system, making it efficient for real-world applications.

• Boolean information has shown significant advancements
in efficient metadata protection and holds great potential for
implementation in an encrypted search index.

Collectively, these opportunities form the basis for our
design of a new encrypted database.

BirDB Replica (offline preprocess)

Filter
(by key)

Chunk
(by key)

Parity
(by value)

Salted
K-V

19,[Rat]

1,[Cat]

1

3,19 'Dog'

'Cat'

...

BirDB Master (online query)

BIndex

'Dog''Cat'

UserUser
Compact giant node

Preserve light node

3,[Dog]

7,[Pig]
...7

'Rat'

'Pig'

...

Storage

[1] [3,7] [19]

[1,3,7]

[1,3,7,19]

1 3 7 19

membership
propagation

'Pig' 'Rat'

Index branch

Fig. 3: BIRDB’s architecture for searchable, compact, and metadata-
hiding encrypted database built on the two-phase PIR.

III. OVERVIEW

A. System model

Same as [25], in BIRDB, the database items are divided
into partitions, each managed by a different group of EDB
servers. Multiple partitions can exist in a query system, and
execution across partitions occurs in parallel.

Entities. For a single partition (depicted in Figure 3), we
adopt the two-phase PIR model, specifically the CK protocol
introduced by Corrigan-Gibbs and Kogan [23]. In our setup, a
single partition consists of two servers deployed on the public
cloud: an offline server (usually a replica) responsible for
database preprocessing to generate runtime hints for PIR, and
an online server (master) handling user queries. These servers
are semi-honest, in the sense that they do not collude but have
an interest in learning which objects the user is accessing from
the database. Concretely, BIRDB’s architecture for a single
partition includes the following entities:

• User: Multiple users interact with the BIRDB replica to
obtain hints and send search queries (e.g., point search) to the
BIRDB master for information retrieval. Each user needs to
store a salt, a randomly generated 128-bit key, used for salting
and recovering the original data during offline preprocessing
to ensure that plaintexts are hidden.

• Master: The BIRDB master processes user queries by
searching BINDEX sublinearly and performing sublinear PIR
computations. The master also ensures that the l replicas have
a consistent view of the database state, and users know which
servers to contact. In line with [25], we employ l = 2 in our
implementation.

• Replica: The BIRDB replica conducts database preprocess-
ing to generate runtime hints, ensuring metadata-hiding during
information retrieval while keeping the computation required
on the master sublinear.

Similar to [25], BIRDB does not provide availability if
servers refuse to provide services. However, it is important to
note that cloud providers are typically incentivized to ensure
availability by either bringing the failed server back online or
replacing it promptly [25], [38], [72].

Data model. To exemplify BIRDB’s design, we employ the
NoSQL key-value data model for its simplicity. However,
it’s important to note that BIRDB is highly extensible and
can be applied to other data models transparently, including

4

structured relational data models and unstructured key-value
pairs. This is made possible by the unclustered architecture on
which BIRDB is built, as discussed in [50], which decouples
BIRDB’s encrypted search index from the underlying storage.

Similar to previous works [47], [58], BIRDB replicates the
database D across both the offline and online servers. The
database consists of two confidential columns, each containing
n keys or values (items). Each item has a size of b bits. Before
sending values to the replicas, users encrypt them using their
salts to ensure confidentiality during preprocessing. The pre-
processed results, also known as hints, can later be recovered
by the user using the respective salts. The correctness of this
process is guaranteed by the reflexivity property of XOR on
boolean operations, as we will explain in §IV.

In line with typical PIR systems [25], [47], the value
column in database D is treated as an array, where D[i]
represents the i-th value in D. The notation [x, y] is used to
denote the set of consecutive integers from x to y, inclusive.
For simplicity, when x = 1, the notation [y] is used to represent
the set {1, ..., y}.

PIR model (two-phase PIR [23]). BIRDB is built on the two-
phase PIR which typically comprises four algorithms (Prep,
Query, Resp, Recov). These algorithms are defined as
follows in the setup of BIRDB over a database D of n items:

• Prep(D)→ h: this algorithm is executed by BIRDB
replicas for each user. It takes the database D as input and
outputs a hint h. The hint h consists of three parts: randomly
partitioned chunks, filters for chunks, and parities for chunks.

• Query(h,i)→ qi: this algorithm is executed by each user.
It takes the hint h and the desired query index i as input and
outputs a query qi.

• Resp(D,qi)→ ri: this algorithm is executed by the
BIRDB master. It takes a query qi from users as input and
outputs a response ri.

• Recov(h,ri)→ di: this algorithm is executed by each user.
It takes as input a hint h from a replica and a response ri from
the master, and outputs the desired data object di.

These four algorithms work together to enable the
metadata-hiding retrieval of specific data objects in BIRDB,
ensuring that the access patterns and queried data remain
concealed from the untrusted servers.

B. Threat model

In line with recent cloud-based EDBs [21], [25], [47], [58],
we assume semi-honest database servers, in the sense that
these servers do not collude but are interested in learning the
plaintext data and the accessed items. Adversaries, denoted as
A, can include database administrators and privileged insiders
who can perform passive attacks such as cipher analysis [16]
and dictionary attack [18] to extract plaintext information. We
rely on the security of one-way functions (OWFs) like SHA-
256 [33], assuming that A is computationally incapable of
reversing OWFs or compromising cryptographic encryption
keys. These assumptions form the foundation for ensuring
the confidentiality of both the data and metadata in BIRDB’s
encrypted data during encrypted search.

1 1 100 10 0

01
OR

Query()Query()

OWFs

0 01 1

11
Hit

Fig. 4: BIRDB employs boolean information for logarithmic en-
crypted search by testing membership in index branches and finally
comparing every bit at leaf nodes.

We assume that users are always honest and do not engage
in collusion with any servers. While access control mecha-
nisms [52] and blacklists [69] can be used to prevent corrupted
users, we do not consider them within the scope of this work.
Additionally, similar to prior research [25], we assume that the
underlying storage engine is maliciously secure. This ensures
that servers can retrieve the correct data from the underlying
storage by detecting rollback and fork attacks, which have been
extensively studied in previous storage works [19], [41], [67].

Out-of-scope attacks. We make the assumption that servers
do not engage in active attacks such as modifying, dropping, or
replaying queries, and that they adhere to BIRDB’s protocol.
Mitigations exist to authenticate queries and ensure query
integrity on plaintext data under active attacks, but addressing
integrity under active attacks on encrypted data remains an
open problem that we leave for future work [74], [78]. Further-
more, we assume a fixed size for items, which eliminates size
leakage. It is challenging to prevent size leakage efficiently
without extensive padding to the largest file size (which is
costly) or relying on trusted hardware (which requires trust
in a third-party vendor). However, mitigations such as partial
padding and delayed accessing, where different file chunks are
downloaded at different times, can be employed [53], [68].

BIRDB’s guarantees. BIRDB’s confidentiality guarantee en-
sures that all index keys are irreversible, in the sense that ifA is
a computationally bounded adversary,A is infeasible to reverse
the encrypted index keys and retrieve the original items in
plaintext. These guarantees are facilitated by BIRDB’s index,
which effectively achieves high-performance encrypted search
with logarithmic complexity and compactness. Formally, we
have the following theorem that captures BIRDB’s security
and and is proved in §V:

Theorem 1. Given that the one-way functions (OWFs) used in
index construction is mathematically irreversible, and assum-
ing that the ε-approximate linear models and the two-phase
PIR scheme of Corrigan-Gibbs and Kogan [23] are secure
against passive attacks, the BIRDB encrypted database is se-
cure in the presence of a computationally bounded adversary.

C. System goals and approaches

At a high level, our goal is to achieve searchability, com-
pactness, and metadata protection for encrypted search, while
maintaining the confidentiality of both data and metadata. To
accomplish this, our key weapon is a new boolean information
retrieval (BIR) technique that allows us to achieve all of these
objectives simultaneously. Below, we provide a brief overview
of the approaches to achieve these desirable features in EDBs.

Goal 1: Logarithmic encrypted search. Enabling search
functionality on encrypted data is crucial for efficient retrieval

5

of specific items without the requirement of decrypting the
entire dataset. To address this challenge, our key idea is
to replace conventional numerical comparison operations at
index branches with secure boolean membership tests. By
incorporating secure boolean information into an orchestrated
searchable data structure, we can enable encrypted searches
with a logarithmic time complexity.

Figure 4 exemplifies our encrypted search method named
BINDEX. This approach involves converting database items
into boolean information using cryptographic one-way func-
tions (OWFs), such as SHA-256. Drawing inspiration from the
Bloom Filter [13], BINDEX employs a membership-preserving
data structure to maintain the membership of the OWF-
transformed items, which are represented as binary strings
(e.g., ‘?’ is represented as ‘1100’). These binary strings serve
as leaf nodes positioned at the lowest index layer, while the
inner nodes at higher levels are the unions of their child nodes.
Each inner node performs an OR gate computation on the
boolean entries of its child nodes to generate its own boolean
information. To search for a specific item, BINDEX compares
the ‘1’ bits of the item at each index branch, starting from
the root, to ensure a match for every ‘1’ bit. At the leaf node,
BINDEX compares each entry, including ‘0’ bits, to ensure an
exact match with the queried item.

Goal 2: Compact index with constant overhead.

TODO

Goal 3: End-to-end metadata protection. To effectively
conceal metadata and eliminate the leakage of search access
patterns, we implement BIRDB using the CK protocol intro-
duced by Corrigan-Gibbs and Kogan [23]. The CK protocol
is an efficient two-phase PIR protocol that offloads query-
independent computations to a preprocessing phase, resulting
in sublinear computation for online queries.

Figure 6 demonstrates the integration with two-phase PIR
discussed in §III-B. Specifically, the process consists of a pre-
processing phase and a query phase. During the preprocessing
phase, the BIRDB replica divides the database into random
chunks. For each chunk of keys, it computes the parity of the
corresponding values and builds filters for each chunk (1).
In the query phase, the user searches for their desired query
item by testing its membership in each chunk’s filter. Once
the target chunk is found, the user deletes the intended query
item (2). The BIRDB master then searches the database using

1 1
start

end

0

1

0 0

1
'0'->wasted

A giant BIndex node Compact
Offset indexing

1 2 30

0

8 11

Linear approximation

10
y=x+1

y=3x-10 1 2 3
8 11

Fig. 5: Based on the boolean information, BIRDB compacts giant
index nodes to optimize I/O efficiency and achieve high performance.

= c

BirDB Replica BirDB Master

{1, 3}, a b

{7, 19, 32}, c d e

1Key 3 7 19 32

aValue b c d e

Chunk 2Chunk 1

Hints for PIR

User

1

1 3 7 19 32

aValue b c d e

Key

BIndex Goal 1&2

Query ('7')

'7' in {7,19,32}

Query ('19,32')
high probability

2

3

4 Return d e

c d e
5

 d e

i.e., Query ('7')

Recover

Fig. 6: The third goal of metadata-hiding in BIRDB is achieved
through the utilization of two-phase PIR. BINDEX, which accom-
plishes Goals 1 and 2, accelerates the PIR process, while PIR ensures
the metadata confidentiality of BINDEX.

BINDEX based on the query items and computes the parity of
the searched values (3 and 4). Finally, the user recovers
the result by XORing the returned parity with the parity of the
original chunk (5). The correctness of this process is ensured
by the reflexivity of XOR on boolean operations; BIRDB
accelerates the PIR process using BINDEX (§IV-C).

Overall, by utilizing one core concept of boolean informa-
tion retrieval, we construct a new encrypted search index with
logarithmic complexity using OWFs. Furthermore, we com-
pact the index by employing linear approximation techniques.
Finally, we ensure the concealment of search metadata by in-
tegrating with two-phase PIR based on boolean operations. By
doing so, we address all three desired properties: searchability,
compactness, and metadata-hiding, in a unified manner.

IV. PROTOCOL DESCRIPTION

A. Desiging an efficient encrypted search index

We first establish the foundation for constructing BIRDB’s
encrypted search index and subsequently delve into the details
of index construction and search methods.

Preliminaries. The underlying searchable data structure in
BIRDB is based on the Bloom filter [13], a compact data
structure designed for efficient membership testing. The Bloom
filter operates by utilizing a single set to store the hash values
of all items. Specifically, a Bloom filter B is represented by
an m-bit array and employs k independent and uniformly
distributed OWFs, i.e., cryptographic hash functions {Hk}.
Each hash function maps an item to an index in the Bloom
filter array. To insert an item x into the filter, we compute
its hash using {Hk} and set all the bits at the corresponding
indices in B to 1. For testing whether an item y is a member
of the set, we again hash y using {Hk}. If any of the bits at
the corresponding indices in B are 0, then y is definitely not
in the set (i.e., zero false negatives). Conversely, if all the bits
at the corresponding indices in B are 1, y is considered to
have a high probability of being in the set, albeit with a small
configurable false positive rate [13].

Challenges and opportunities. As mentioned above, tradi-
tional Bloom filters offer valuable information regarding the
membership of data for tests. In addition to this, we have
observed two key characteristics of a Bloom filter that make
it promising for encrypted search. Firstly, a Bloom filter is

6

monolithic in nature, meaning that all items are assigned to
a single boolean set. This characteristic allows for efficient
item membership tests related to data existence. Secondly, a
Bloom filter ensures data confidentiality by utilizing one-way
functions (OWFs) to transform original plaintexts into hash
values of items. The use of OWFs makes the Bloom filter
computationally irreversible, effectively hiding the original
plaintexts. This security property relies on the assumption of
the one-wayness of cryptographic hash functions, which has
been extensively studied in prior research [13].

However, despite the valuable membership property and
data confidentiality offered by a Bloom filter, the monolithic
nature limits its functionality to supporting only membership
tests by indicating whether an item (hash) is present in a
set. Consequently, Bloom filters alone are not capable of
functioning as an index for efficiently searching encrypted
data. We observe two significant benefits of using Bloom filters
for encrypted search:

• Weaker but sufficient security guarantee. In encrypted
search, users do not require the encrypted index keys to be
decryptable, as they are used solely for searching correspond-
ing values. Therefore, the cryptographic approaches that prior
works use are overkilled [22], [47]; the utilization of one-
way functions (OWFs) to efficiently transform plaintexts into
computationally irreversible ciphertexts is sufficient.

• Compressability. The boolean nature of Bloom filters al-
lows for the utilization of boolean information compression
techniques. Leveraging these techniques can lead to significant
compression gains in the encrypted search index. This is par-
ticularly advantageous as traditional encrypted search indexes,
such as Order-Preserving Encryption (OPE)-based indexes, are
not easily compressible [58], [25]. By reducing the index size
through compression, the encrypted search system can benefit
from improved performance by avoiding the drawbacks associ-
ated with large index sizes and potential performance penalties.
The details regarding BIRDB compression are introduced in
§IV-B.

Approach. To construct the encrypted search index, we modify
the traditional monolithic Bloom filter by decomposing it into
a collection of minifilters. Each minifilter is responsible for
storing the hash (in bits) of a single item. In other words, a
mini-filter represents a Bloom filter dedicated to an individual
data item, where only one item (hash) is assigned to the set.

The minifilters are recursively organized to form a search-
able index known as BINDEX. These minifilters have a fixed
array size m, and are arranged in a Merkle-tree structure. Each
minifilter is stored at a leaf node of the tree, representing an
index key. The index keys, such as "1100" for record ‘?’ in
Figure 4, are sorted based on their plaintext key order. The
values of the inner nodes, which include all nodes except the
leaf nodes, are determined through an element-wise OR gate
computation on the minifilters of their child nodes. Let’s con-
sider an inner node with l child nodes, denoted as Cn. For each
bit (array entry) in the minifilter of the inner node, its value
is computed as follows: Subin[i] = Cn1[i] or ... or Cnl[i] ,
for all i in the range [0,m]. Note that, in the construction
of BINDEX, only the leaf nodes in the minifilter tree store
actual values, such as record addresses. The inner nodes serve
the primary purpose of indexing, facilitating tree traversal for

Algorithm 1: Minifilter-based encrypted search
1 Function PointSearch(root, key) do
2 if isLeaf(root) then

O Every corresponding bit should match
3 if key.rft = root.rft . Minifilter comparison
4 then
5 return root

O In inner nodes, every ’1’ bit should match
6 if isInner(root) then
7 if left minifilter.contain(key) then
8 return PointSearch(root.left, key)
9 if right minifilter.contain(key) then

10 return PointSearch(root.right, key)
11 return NULL . Key is non-existent
12 Function RangeSearch(root, [key1, key2]) do
13 left← PointSearch(root, key1)
14 right← PointSearch(root, key2)
15 while left.next ! = right do
16 value[]← left.next . Retrieve sorted leaf nodes
17 return value

efficient search operations.

Design rationale. The searchability of BINDEX is achieved
through the membership-preserving property of the minifilters.
Specifically, when any entry in a child node’s minifilter is
set to "1", the OR gate computation guarantees that the
corresponding entry in its parent node’s minifilter will also
contain a "1" bit. For example, in Figure 4, the first entry
of the minifilter for ‘?’ is "1" while the first entry of the
minifilter for ‘♣’ is "0". As a result, the first entry of their
parent node’s minifilter is computed as 1 OR 0 = 1.

The BINDEX design ensures that if an item exists in a
minifilter node, it must also exist in its parent node. In other
words, the membership information is propagated to higher-
level index nodes. This novel observation, utilized by BINDEX,
allows for efficient top-down logarithmic tree traversal based
on the membership information. Furthermore, the irreversible
confidentiality provided by OWFs directly carries over to the
construction of minifilters. By testing the membership of query
items in the minifilter nodes, BINDEX eliminates the need
for plaintext comparisons used in BSTs of traditional insecure
databases.

Using BINDEX for encrypted searches. Algorithm 1 outlines
the process of an encrypted point query through BINDEX,
which involves generating a minifilter for the query item and
traversing BINDEX to locate the corresponding value. BIRDB
performs minifilter comparisons at each inner node to verify
the membership of each "1" bit in the query item’s minifilter.
The traversal continues until reaching the leaf nodes, where the
match of every bit confirms the presence of a unique index key.

The point search method can be extended to handle range
queries. By transforming the range boundaries into minifilters,
BINDEX locates two matched leaf nodes using the same
method as point queries. All values between these leaf nodes
are then returned, akin to the retrieval process in a B+-tree.

B. BINDEX compression

A core index challenge: size and cost. Despite BINDEX’s
efficient tree-based index structure, which facilitates logarith-
mic search complexity, achieving a low search complexity
alone is insufficient for achieving high-performance encrypted
search. The reasons are two fold. Firstly, as the total number

7

1 010 10 1 01 10
An original (uncompressed) BIndex node

... ...

152 2318 29 5533 7264

last '1' bit1st '1' bit

2,sl0,ic0 29,sl1,ic1

8883 9389 98

72,sl2,ic293,sl3,ic3

= 1

2,sl0,ic0

Error bound
Step 1

Step 2

2nd 3rd ...

Fig. 7: The construction and a running example that show our com-
pact design for BINDEX. Step 1 extracts an original BINDEX node
into offset representation wherein the ith entry is the position of the
ith ‘1’ bit. In Step 2, we uses the Piece-wise Linear Approximation
model [29] to compact and search the extracted offset array.

of items increases, each BINDEX node experiences exponen-
tial growth in membership information storage due to the
membership propagation design (§IV-A). Consequently, the
index size significantly expands, adversely affecting search
efficiency. Secondly, even in a static setting, the false positive
issue, attributed to the fundamental nature of Bloom filters,
further amplifies the size of each minifilter node.

To illustrate, let’s consider a database with 220 static items
and the user aims for a low false positive rate of 1 × 10−3,
same as the configuration in [73], each minifilter in BINDEX
would need to be approximately 1.79MB in size according to
the Bloom filter theory [13]. Consequently, the entire BINDEX
would require a substantial amount of storage space, around
3.57TB, which is impractical. The significant increase in space
occupancy compared to a plaintext database index results in a
notable performance decline due to expensive I/O operations
involving secondary storage.

Facing this challenge, our contention is that relying solely
on achieving theoretical logarithmic search complexity is in-
sufficient for achieving high-performance encrypted search,
even though it represents a significant improvement over linear
search methods [22], [24]. Instead, an encrypted search index
should adopt a compact design to ensure that the overall query
performance remains manageable and cost-effective.

The compact design.

TODO

Running example. Figure 7 provides a running example of
searching a compressed BINDEX node using Algorithm ??.
Each accessed node in the search path is highlighted in blue.
We assume the compressed BINDEX has an error bound ε = 1
and the key being searched is k = 83.

The search begins from the root segment s′ = l0[0][0]. The
next position, bfs′(k)c = bk ∗ sl0 + ic0c, is computed to be 1
for the next level. The search then proceeds to locate k within
the range [1−ε, 1+ε] in l1, considering the keys [2, 29, 72]. It
is determined that the next segment for the search is s′′ = l1[2]
because k > 72. Finally, the position for the next (leaf) level,
l2, which represents the extracted offset array, is computed
by evaluating bfs′′(k)c = 8. Consequently, a binary search is
performed to search for k within the range [8 − ε, 8 + ε] in

l2. Ultimately, it is found that k is located at position 9 since
A[9] = 83.

In the compacted BINDEX, Algorithm ?? functions as the
internal search API of minifilter.contain(k) in Al-
gorithm 1. Combined, they constitute the complete encrypted
search algorithm (without metadata protection) of BIRDB.

C. Seamless integrating BINDEX with two-phase PIR

Our metadata-hiding solution builds on the two-phase
PIR scheme of Corrigan-Gibbs and Kogan [23]. We start by
describing the CK protocol and then we decribe our approach
to seamlessly integrate BINDEX with it.

Overview of the CK protocol. As described in §II-B, the CK
protocol comprises two phases: an offline preprocessing phase
conducted on BIRDB’s replica, and an online query processing
phase involving BIRDB’s master. The offline preprocessing
phase is independent of the specific item that the user wants
to query and involves the Prep step. This phase is performed
on BIRDB’s replica and includes the necessary preparations
for the PIR search process. In the online query processing
phase, which depends on the specific item being queried,
the interactions occur between BIRDB’s master (who has
no knowledge of the preprocessed hints generated by the
replica) and the user. This phase consists of the Query,
Resp, and Recov steps, where the user submits the query, the
master provides the corresponding response, and the necessary
recovery actions are taken.

• Prep(D)→ h. The replica divides all index keys of
the database items into

√
n log n independent random sets,

denoted as S1, ..., S√n logn, where each set contains
√
n

keys sampled uniformly at random. For each set Si, the
replica computes its parity, Pi, where pi = ⊕t∈Si

D[t] for
i ∈ [1,

√
n log n]. Each parity is uniformly padded to b bits.

In short, a parity pi for set si is the XOR of all items in
D referenced by the keys in Si. The replica sends the hint
h = {(S1, P1), ..., (S√n logn, P

√
n logn)} to the user.

• Query(h,i)→ qi. The user generates a query for retrieving
an item with index key i (i.e., D[i]). The user selects a set S
from the hint h such that i ∈ S (the corresponding parity
is PS). The user then removes i from set S with a high
probability (i.e., 1−

√
n−1
n); otherwise, it removes a randomly

chosen key from S\{i}. The query qi is transformed to the
resulting set S∗, which has a size of

√
n− 1. The user sends

qi to the master.

• Resp(D,qi)→ ri. The master computes the PIR, ri =
⊕t∈S∗D[t], where S∗ is the query set received from the user.
The master sends ri back to the user.

• Recov(h,ri)→ di. Using the parity PS obtained during
the Query step, the user recovers the real desired query item
D[i] by computing di = PS ⊕ ri.

To ensure security against a semi-honest online server, the
CK protocol incorporates a cheap refresh operation after each
query. This operation involves the user generating a new set
with

√
n−1 new random keys and obtaining the corresponding

parity Pnew from the replica. The user then adds the previously
queried key k to the new set and updates the parity by XORing
the key’s parity with Pnew. This refresh operation prevents the

8

0 2k 4k 6k 8k 10k
Throughput (queries/sec)

0

50

100

150

200

250

300

M
ea

n
la

te
nc

y
(m

s) HElibDB OO-PIR UC-BirDB BirDB

Fig. 8: Throughput and latency comparison among different metadata-
hiding baselines, each equipped with 220 items.

server from deducing search access patterns by comparing sets
in multiple queries.

Accelerating PIR with BINDEX.

TODO

V. PERFORMANCE AND SECURITY ANALYSIS

A. Proof Sketch of Security

TODO

B. High performance

TODO

VI. EVALUATION

Testbed. The experiments were conducted on a cluster of
lab machines, each featuring a 2.60GHz Intel E5-2690 V3
CPU, 64GB memory, 40Gbps NIC, and 24 cores. All nodes,
including users, master, and the replica, were executed within
Docker containers. The average ping latency between the nodes
was set at 0.17ms with the aid of Linux traffic control [12].

Baseline. We utilized WiredTiger [36], a prominent NoSQL
key-value storage engine, to implement all of our base-
line systems. WiredTiger is widely employed in industrial
MongoDB deployments, making it an appropriate default
choice. Our comparative analysis involved three state-of-the-art
baseline approaches: HElibDB [22], an imperative oblivious
database developed by IBM, which employs Fermat’s Little
Theorem for comparison on homomorphic encrypted data.
However, each query in HElibDB necessitates processing the
entire database for metadata protection. We also incorpo-
rated the CK [23] two-server OO-PIR protocol, known for
its exceptional performance. The CK protocol moves query-
independent computation to an offline preprocessing phase.
Lastly, we assessed a version of BIRDB without compression,
denoted as UC-BIRDB in subsequent evaluations. Although
UC-BIRDB maintains logarithmic search complexity through
our implementation of a boolean information-based index
structure (§IV-A), it exhibits a significantly larger size due to
lack of compression.

Workload and default setting. We adopted the same NoSQL
key-value workload as CK OO-PIR. This involved generating a
range of keys and values with fixed sizes, specifically ranging
from 210 to 220. The key size was set at 8 bytes, while
the value size was set at 64 bytes. Unless specified for the

scalability study, our evaluations were conducted on a default
dataset of 220 key-value pairs. We used point searches for
experiments by default. Each experiment was executed for a
duration of 60 seconds, and the results were collected during
the middle 30 seconds (i.e., 15s to 45s) to mitigate any
potential disturbances caused by system start-up or cool-down.
Our extensive evaluation focused on addressing the following
research questions:

• How efficient is BIRDB compared to baselines?

• What is the communication cost of BIRDB?

• Can BIRDB scale efficiently?

• How sensitive is BIRDB to compression error bound?

A. End-to-end Performance

TODO

B. Scalability

TODO

C. Sensitivity

TODO

VII. DISCUSSION

TODO

VIII. CONCLUSION

TODO

REFERENCES

[1] “Data breaches - updated list,” https://tech.co/news/
data-breaches-updated-list, accessed on June 2, 2023.

[2] “Spideroak,” 2007, website: https://spideroak.com/.
[3] “Sync,” 2011, website: https://www.sync.com/.
[4] “Tresorit,” 2011, website: https://tresorit.com/.
[5] “Keybase,” 2014, website: https://keybase.io/.
[6] “Preveil,” 2015, website: https://www.preveil.com/.
[7] (2023, May 20) Chatgpt confirms data breach. [Online]. Available:

https://securityintelligence.com/articles/chatgpt-confirms-data-breach/
[8] (2023, May 15) Tiktok data breach timeline. [Online]. Available:

https://firewalltimes.com/tiktok-data-breach-timeline/
[9] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving

encryption for numeric data,” in Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, 2004, pp. 563–574.

[10] R. R. Al-Dahhan, Q. Shi, G. M. Lee, and K. Kifayat, “Survey on
revocation in ciphertext-policy attribute-based encryption,” Sensors,
vol. 19, no. 7, p. 1695, 2019.

[11] M. B. Aliyu, “Efficiency of boolean search strings for information
retrieval,” American Journal of Engineering Research, vol. 6, no. 11,
pp. 216–222, 2017.

[12] W. Almesberger et al., “Linux network traffic control—implementation
overview,” 1999.

[13] F. Angius, M. Gerla, and G. Pau, “Bloogo: Bloom filter based gossip
algorithm for wireless ndn,” in Proceedings of the 1st ACM workshop
on Emerging Name-Oriented Mobile Networking Design-Architecture,
Algorithms, and Applications, 2012, pp. 25–30.

9

[14] A. Beimel, Y. Ishai, and T. Malkin, “Reducing the servers computation
in private information retrieval: Pir with preprocessing,” in Advances
in Cryptology—CRYPTO 2000: 20th Annual International Cryptology
Conference Santa Barbara, California, USA, August 20–24, 2000
Proceedings 20. Springer, 2000, pp. 55–73.

[15] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart, “Deterministic
encryption: Definitional equivalences and constructions without random
oracles,” in Advances in Cryptology–CRYPTO 2008: 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings 28. Springer, 2008, pp. 360–378.

[16] J. Black, P. Rogaway, and T. Shrimpton, “Black-box analysis of the
block-cipher-based hash-function constructions from pgv,” in Crypto,
vol. 2442. Springer, 2002, pp. 320–335.

[17] D. Boneh, D. Mazieres, and R. A. Popa, “Remote oblivious storage:
Making oblivious ram practical,” 2011.

[18] L. Bošnjak, J. Sreš, and B. Brumen, “Brute-force and dictionary
attack on hashed real-world passwords,” in 2018 41st international
convention on information and communication technology, electronics
and microelectronics (mipro). IEEE, 2018, pp. 1161–1166.

[19] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza, “Roll-
back and forking detection for trusted execution environments using
lightweight collective memory,” in 2017 47th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN).
IEEE, 2017, pp. 157–168.

[20] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun, “A practical
concurrent binary search tree,” ACM Sigplan Notices, vol. 45, no. 5,
pp. 257–268, 2010.

[21] W. Chen, T. Hoang, J. Guajardo, and A. A. Yavuz, “Titanium: A
metadata-hiding file-sharing system with malicious security,” Cryptol-
ogy ePrint Archive, 2022.

[22] H. E. L. Contributors, “Helib: Homomorphic encryption library,” https:
//github.com/homenc/HElib, 2021.

[23] H. Corrigan-Gibbs and D. Kogan, “Private information retrieval with
sublinear online time,” in Advances in Cryptology–EUROCRYPT 2020:
39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part I 39. Springer, 2020, pp. 44–75.

[24] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica, “Dory:
An encrypted search system with distributed trust,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 1101–1119.

[25] ——, “Dory: An encrypted search system with distributed trust,” in
Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, 2020, pp. 1101–1119.

[26] D. Demmler, A. Herzberg, and T. Schneider, “Raid-pir: practical multi-
server pir,” in Proceedings of the 6th edition of the ACM Workshop on
Cloud Computing Security, 2014, pp. 45–56.

[27] J. Doerner and A. Shelat, “Scaling oram for secure computation,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 523–535.

[28] I. Dropbox, “Dropbox,” http://www. dropbox. com, 2014.
[29] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic com-

pressed learned index with provable worst-case bounds,” Proceedings
of the VLDB Endowment, vol. 13, no. 8, pp. 1162–1175, 2020.

[30] P. Gasti and K. B. Rasmussen, “On the security of password man-
ager database formats,” in Computer Security–ESORICS 2012: 17th
European Symposium on Research in Computer Security, Pisa, Italy,
September 10-12, 2012. Proceedings 17. Springer, 2012, pp. 770–
787.

[31] C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova, and
D. Wichs, “Optimizing oram and using it efficiently for secure compu-
tation,” in Privacy Enhancing Technologies: 13th International Sympo-
sium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings
13. Springer, 2013, pp. 1–18.

[32] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp.
431–473, 1996.

[33] S. Gueron, S. Johnson, and J. Walker, “Sha-512/256,” in 2011 Eighth
International Conference on Information Technology: New Generations.
IEEE, 2011, pp. 354–358.

[34] A. Henzinger, M. M. Hong, H. Corrigan-Gibbs, S. Meiklejohn, and
V. Vaikuntanathan, “One server for the price of two: Simple and fast
single-server private information retrieval,” Cryptology ePrint Archive,
2022.

[35] Y. Himeur, A. Sayed, A. Alsalemi, F. Bensaali, A. Amira, I. Varlamis,
M. Eirinaki, C. Sardianos, and G. Dimitrakopoulos, “Blockchain-based
recommender systems: Applications, challenges and future opportuni-
ties,” Computer Science Review, vol. 43, p. 100439, 2022.

[36] S. Idreos and M. Callaghan, “Key-value storage engines,” in Pro-
ceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 2667–2672.

[37] P. Jiang, Q. Wang, J. Cheng, C. Wang, L. Xu, X. Wang, Y. Wu,
X. Li, and K. Ren, “Boomerang:{Metadata-Private} messaging under
hardware trust,” in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 2023, pp. 877–899.

[38] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Finan-
cial Cryptography and Data Security: FC 2010 Workshops, RLCPS,
WECSR, and WLC 2010, Tenerife, Canary Islands, Spain, January 25-
28, 2010, Revised Selected Papers 14. Springer, 2010, pp. 136–149.

[39] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in Proceedings of the 2018 International
Conference on Management of Data. ACM, 2018. [Online]. Available:
https://dl.acm.org/doi/10.1145/3183713.3196909

[40] T. Kraska, A. Beutel, E. H. Chi, J. Dean, N. Polyzotis, and
L. Zhu, “Consistency guarantees for parallel incremental data
processing,” in Proceedings of the 2019 International Conference
on Management of Data. ACM, 2019, pp. 1271–1288. [Online].
Available: https://dl.acm.org/doi/10.1145/3299869.3319882

[41] T. K. Kuppusamy, V. Diaz, and J. Cappos, “Mercury:{Bandwidth-
Effective} prevention of rollback attacks against community reposito-
ries,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17), 2017, pp. 673–688.

[42] K. Kurosawa, “How to correct errors in multi-server pir,” in Advances
in Cryptology–ASIACRYPT 2019: 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8–12, 2019, Proceedings, Part II. Springer, 2019,
pp. 564–574.

[43] A. H. Lashkari, F. Mahdavi, and V. Ghomi, “A boolean model in infor-
mation retrieval for search engines,” in 2009 International Conference
on Information Management and Engineering. IEEE, 2009, pp. 385–
389.

[44] C. Li, W. Ma, and L. Qin, “Efficient and accurate approximate
query processing on data warehouses with learned indexes,” in
Proceedings of the 2019 International Conference on Management
of Data. ACM, 2019, pp. 1717–1734. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3299869.3319886

[45] S. Li and M. Gastpar, “Converse for multi-server single-message pir
with side information,” in 2020 54th Annual Conference on Information
Sciences and Systems (CISS). IEEE, 2020, pp. 1–6.

[46] H.-Y. Lin, S. Kumar, E. Rosnes, A. G. i Amat, and E. Yaakobi,
“Multi-server weakly-private information retrieval,” IEEE Transactions
on Information Theory, vol. 68, no. 2, pp. 1197–1219, 2021.

[47] Y. Ma, K. Zhong, T. Rabin, and S. Angel, “Incremental
{Offline/Online}{PIR},” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 1741–1758.

[48] S. J. Menon and D. J. Wu, “Spiral: Fast, high-rate single-server pir via
fhe composition,” in 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 2022, pp. 930–947.

[49] M. H. Mughees, H. Chen, and L. Ren, “Onionpir: Response efficient
single-server pir,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 2292–2306.

[50] A. MySQL, “Mysql,” 2001.
[51] F. Olumofin and I. Goldberg, “Revisiting the computational practicality

of private information retrieval,” in International Conference on Finan-
cial Cryptography and Data Security. Springer, 2011, pp. 158–172.

[52] S.-C. Park and M.-S. Lee, “A survey of access control models in
database management systems,” Journal of Computing Science and
Engineering, vol. 9, no. 2, pp. 57–78, 2015.

[53] S. Patel, G. Persiano, K. Yeo, and M. Yung, “Mitigating leakage in
secure cloud-hosted data structures: Volume-hiding for multi-maps via

10

hashing,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 79–93.

[54] G. Persiano and K. Yeo, “Limits of preprocessing for single-server pir,”
in Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2022, pp. 2522–2548.

[55] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Advances in
Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010. Proceedings 30. Springer,
2010, pp. 502–519.

[56] B. Pinkas and T. Schneider, “Oblivious ram: Improved lower bounds
and optimal constructions,” in Proceedings of the 31st Annual
International Cryptology Conference (CRYPTO), 2009, pp. 502–
519. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-642-03356-8 28

[57] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa,
“Visor: Privacy-preserving video analytics as a cloud service,” in
Proceedings of the 29th USENIX Conference on Security Symposium,
2020, pp. 1039–1056.

[58] R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query processing,”
in Proceedings of the twenty-third ACM symposium on operating
systems principles, 2011, pp. 85–100.

[59] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk,
and S. Devadas, “Constants count: Practical improvements to oblivious
{RAM},” in 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 415–430.

[60] T. Shen, J. Jiang, Y. Jiang, X. Chen, J. Qi, S. Zhao, F. Zhang,
X. Luo, and H. Cui, “Daenet: making strong anonymity scale in a fully
decentralized network,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 4, pp. 2286–2303, 2021.

[61] T. Shen, J. Qi, J. Jiang, X. Wang, S. Wen, X. Chen, S. Zhao, S. Wang,
L. Chen, X. Luo et al., “{SOTER}: Guarding black-box inference for
general neural networks at the edge,” in 2022 USENIX Annual Technical
Conference (USENIX ATC 22), 2022, pp. 723–738.

[62] E. Shi, W. Aqeel, B. Chandrasekaran, and B. Maggs, “Puncturable pseu-
dorandom sets and private information retrieval with near-optimal online
bandwidth and time,” in Advances in Cryptology–CRYPTO 2021: 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16–20, 2021, Proceedings, Part IV 41. Springer, 2021,
pp. 641–669.

[63] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with o
((logn) 3) worst-case cost.” in Asiacrypt, vol. 7073. Springer, 2011,
pp. 197–214.

[64] E. Stefanov, M. v. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path oram: an extremely simple oblivious ram
protocol,” Journal of the ACM (JACM), vol. 65, no. 4, pp. 1–26, 2018.

[65] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious ram,”
arXiv preprint arXiv:1106.3652, 2011.

[66] D. Stehlé and R. Steinfeld, “Faster fully homomorphic encryption,” in
Advances in Cryptology-ASIACRYPT 2010: 16th International Confer-
ence on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings 16. Springer,
2010, pp. 377–394.

[67] E. Tsyrklevich and B. Yee, “Dynamic detection and prevention of
race conditions in file accesses,” in 12th USENIX Security Symposium
(USENIX Security 03), 2003.

[68] J. Wang, S.-F. Sun, T. Li, S. Qi, and X. Chen, “Practical volume-
hiding encrypted multi-maps with optimal overhead and beyond,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 2825–2839.

[69] Z. Wang, R. Hu, T. Yu, and C. Chen, “Design and implementation of a
database client blacklist mechanism,” in 2019 International Conference
on Computing, Communications and Intelligence Systems (ICCCIS).
IEEE, 2019, pp. 71–74.

[70] E. W. Weisstein, “Fermat’s little theorem,” https://mathworld. wolfram.
com/, 2004.

[71] K. Wilson and K. Wilson, “Onedrive,” Everyday Computing with
Windows 8.1, pp. 71–74, 2015.

[72] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud storage as the
infrastructure of cloud computing,” in 2010 International conference

on intelligent computing and cognitive informatics. IEEE, 2010, pp.
380–383.

[73] P. Wu, J. Ning, J. Shen, H. Wang, and E.-C. Chang, “Hybrid trust multi-
party computation with trusted execution environment,” in The Network
and Distributed System Security (NDSS) Symposium, 2022.

[74] Y. Xia, X. Yu, M. Butrovich, A. Pavlo, and S. Devadas, “Litmus:
Towards a practical database management system with verifiable acid
properties and transaction correctness,” in Proceedings of the 2022
International Conference on Management of Data, Philadelphia, PA,
USA, 2022, pp. 12–17.

[75] H. Xu, Z. Cai, D. Takabi, and W. Li, “Audio-visual autoencoding for
privacy-preserving video streaming,” IEEE Internet of Things Journal,
vol. 9, no. 3, pp. 1749–1761, 2021.

[76] K. Yeo, “Lower bounds for (batch) pir with private preprocessing,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2023, pp. 518–550.

[77] Y. Zhong, H. Li, Y. J. Wu, I. Zarkadas, J. Tao, E. Mesterhazy, M. Makris,
J. Yang, A. Tai, R. Stutsman et al., “{XRP}:{In-Kernel} storage
functions with {eBPF},” in 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), 2022, pp. 375–393.

[78] W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and F. Li, “Veridb: An sgx-
based verifiable database,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2182–2194.

11

