
ECSTORE: A Secure and Compressed Encrypted Database with
Logarithmic-time Indexing

Anonymous submission #xxx

Abstract
Encrypted Databases (EDBs) have gained considerable at-

tention in securing sensitive data outsourced to the public
cloud. EDBs store encrypted data and allow for searches over
it without the need for decryption. However, prior crypto-
graphic index construction in EDBs often lead to order-of-
magnitude slowdown even with optimal (logarithmic) search
complexity. This is primarily due to the substantial storage
overhead incurred by data encryption as large indexes built on
encrypted data are infeasible to compress into small-sized, yet
searchable data structures. As a result, uncompressed large in-
dexes rapidly saturate main memory and necessitate frequent
accesses to slower persistent storage.

We introduce ECSTORE, the first EDB that achieves the
benefits of both data encryption and compression. At the core
of ECSTORE lies the onewayness observation on primary
keys for encrypted search, which enables using secure yet
lightweight one-way functions to generate compressible iden-
tifiers for the keys, then orchestrating a Merkle-tree-like index
termed ECTREE using these identifiers. ECTREE supports a
full set of index operations with logarithmic search complex-
ity. A subtle case is that ECTREE can induce false positives
under dynamic workloads (e.g., updates), thus we propose
a detection algorithm and an index adjustment strategy to
effectively identify false postives and eliminate redundant in-
dex traversals. Meanwhile, ECSTORE ensures query integrity
against compromised servers using a query authentication
protocol based on ECTREE. Extensive evaluations show that
ECSTORE can achieve a compression ratio close to the op-
timal and increase the throughput by up to two orders of
magnitude compared to notable EDBs.

1 Introduction
The surge in popularity of cloud computing has led to the
widespread adoption of cloud storage systems [21, 47]. How-
ever, these systems have raised grave security concerns due to
their processing of user data in plaintext [4,36,52,53]. Recent
incidents, such as the data breach exposing the personal infor-
mation of 2.2 million Pakistani citizens [26], and allegations
against TikTok for compromising the data of over 150 mil-
lion US citizens stored in the cloud [3], highlight the severe
security risks associated with such data storage systems.

Recently, Encrypted Databases (EDBs) emerge as a de-

pendable solution for bolstering data security of cloud stor-
age [19, 35]. By encrypting the data stored on servers and
keeping the decryption keys at the client [12], EDBs effec-
tively preserve data confidentiality against privileged admin-
istrators and cloud-side attackers. To process client queries
on encrypted data, notable EDBs such as CryptDB [41] and
HElibDB [17] employ cryptographic tools like property-
preserving encryption [5, 12], to build search indexes on en-
crypted primary keys. Typical cryptographic indexes [41, 55],
including CryptDB’s, can achieve logarithmic complexity
equivalent to that of unencrypted databases.

Unfortunately, despite achieving logarithmic-time indexing,
these notable EDBs [17, 41] often lead to order-of-magnitude
performance degradation under dynamic workloads. This de-
ficiency arises from the lack of compression in these systems.
Compression allows servers to fit more data in main memory
thus decreases the number of data accesses to slower persis-
tent storage, yielding significant performance gains by at least
an order of magnitude [37,55]. The necessity for compressing
EDBs becomes particularly urgent as encryption introduces
a substantial storage overhead compared to the unencrypted
data (e.g., at least 5x larger for [55]). More importantly, under
dynamic workloads where more and more elements are in-
serted, the performance of existing EDBs severely degrades as
the large cryptographic index rapidly saturates main memory
(as evaluated in §5).

Therefore, an ideal EDB should integrate both encryption
and compression to handle dynamic workloads efficiently,
and support a full set of index operations for diverse queries.

Fundamentally, there exists a tension between encryption
and compression in EDBs. First, if the index is compressed
and then encrypted at rest (in persistent storage), the cloud
server must possess the decryption key to decrypt and then
decompress the index upon receiving queries from clients,
which exposes primary keys to compromised cloud servers.
Second, if index is encrypted with keys inaccessible to the
server and then compressed, the compression mechanisms in
EDBs [41, 55] become ineffective because encryption brings
pseudorandom properties to the index, and pseudorandom
index can only be compressed into non-functional blobs [45].

To resolve this tension, we draw inspiration from an em-
pirical trend of data encryption in databases. Specifically, the
primary keys utilized for indexing (e.g., random identifiers,
counters, timestamps) are often deemed less sensitive than

1

the corresponding values. Furthermore, the indexes, built on
encrypted primary keys, serve exclusively for lookups and
are never decrypted for processing. This onewayness nature,
wherein decryption is unnecessary, suggests that it suffices to
use lightweight One-way Functions (OWFs) [7,31] to securely
convert primary keys into identifiers for building indexes. In
contrast to prior works [17, 41] that rely on incompressible
two-way encryption algorithms (owing to pseudorandom-
ness), the one-way transformed identifiers adopt a boolean
form, thus rendering the identifiers compressible.

Based on the above observations, we propose an Encrypted
and Compressed Data Store (ECSTORE), the first EDB that
achieves the benefits of both encryption and compression. At
the core of ECSTORE lies a compressible tree-based index
named ECTREE that provides efficient support for a full set
of index operations, namely lookup query, range query, in-
sert, update, delete, and bulkload. ECTREE introduces the
concept of membership-based lookups by carefully orches-
trating a tree structure storing data membership information
and conducting searches via membership tests.

As exemplified in Figure 1, an ECTREE is initialized by or-
ganizing the identifiers (i.e., keys transformed by OWFs, such
as SHA-256 [27]) at the bottom layer. The membership infor-
mation of these identifiers is then recursively propagated to
the root through union computations. We term this approach
membership propagation, which ensures that each inner node
conservatively encompasses the membership information of
all its children for search purposes.

Membership propagation offers two crucial benefits. First,
it enables logarithmic encrypted search by testing the member-
ship of query parameters at inner nodes (i.e., by determining
∈ or /∈) without revealing plaintexts. Second, the membership
information is stored in a boolean form (i.e., bits) due to the
use of OWFs, and we observe that only a portion of bits con-
vey useful information for searches. Based on the observation,
we compress large ECTREE nodes by eliminating redundant
bits, converting remaining bits into sorted arrays, and lever-
aging linear approximation with machine learning models
(i.e., learned indexes [30,33]) to precisely compress bit arrays
within constant space occupancy, as only a few slopes and
intercepts in the models need to be stored.

A key performance challenge arises from the issue of mem-
bership hallucination. Specifically, as more elements are in-
serted, the membership information of these elements is ac-
cumulated. As the accumulated information is propagated
to the root, ECTREE may exhibit false-positives (FPs). Con-
sequently, an ECTREE node may pass a membership test
even the node is not on the traversal path of the search tar-
get, causing the hallucination of multiple correct search paths.
To mitigate this issue, we introduce the FP-aware detection
algorithm (FADA) that identifies FP-induced hallucination
and eliminates redundant traversal paths. Additionally, we
propose an index adjustment strategy that splits an ECTREE
when necessary to keep an ECTREE’s FP rate bounded.

...

search target
N7 N8

N4 N5 N6

N2 N3

N1

sorted array

Seg0

Seg1 Segi...

traversal path

Compressmembership
propagation

Logarithmic encrypted search on identifiers

Bottom-up Compressed node

..

Figure 1: ECTREE propagates the membership information of iden-
tifiers (e.g., ?) from the bottom to the top, compresses large inner
nodes that are in the boolean form (represented as sorted arrays)
with learned indexes, and searches via membership tests.

Another security challenge is that a compromised server
may induce integrity breaches by manipulating the database’s
behavior, which involves modifying, dropping, or deleting
query results [51, 58]. Fortunately, ECTREE’s unique mem-
bership propagation construction leads to a Merkle-tree-like
data structure that can facilitate query authentication by ver-
ifying if the requested data is included in the query results.
Therefore, through a careful design of ECTREE, we effec-
tively provide both data confidentiality and query integrity
within an EDB in a unified manner.

We implemented ECSTORE based on CryptDB [41] and
integrated with both MySQL [37] and WiredTiger [16]. EC-
STORE is designed as a layer above them to make it adapt-
able to different data stores and leverage their performance
and fault-tolerance capabilities. Our extensive evaluation
shows that ECSTORE delivered significant compression while
keeping the index encrypted and functional. For instance,
ECSTORE supported a full set of index operations on the
TPC-C dataset [32], and achieved a compression ratio of
4.7 that is close to the maximum ratio of 5.6, which can be
obtained by compressing an entire encrypted index into a
single non-functional blob. ECSTORE also achieved 8.9x
∼ 78x higher throughput compared to the encrypted base-
lines (CryptDB [41] and HElibDB [17]) and vanilla baselines
(MySQL and WiredTiger with no encryption and compres-
sion) by fitting more index components into main memory.

In sum, we make the following three main contributions:
• We introduce ECTREE, a new membership-based index
that efficiently supports a full set of index operations over
encrypted data. ECTREE achieves lossless compression with-
out compromising functionality and effectively authenticates
query results to detect integrity breaches.
•We devise a false-positive-aware detection algorithm and a
lightweight index adjustment strategy to facilitate logarithmic-
complexity index operations over encrypted data.
• We provide a prototype implementation and conduct an
extensive evaluation that demonstrates the advantages and
efficacy of ECSTORE. The source code is released on github.
com/osdipxxx/ecstore.

2

github.com/osdipxxx/ecstore
github.com/osdipxxx/ecstore

System Data Query Index General Lookup
Encryption Integrity Compression Support Complexity

HElibDB [17] 3 3 n/a.? 7 O(N)
Dory [19] 3 3 7 7 O(N)
HybrTC [50] 3 3 n/a.? 7 O(N)
CryptDB [41] 3 7 7 3 O(logN)
Z-IDX [24] 3 7 7 7 O(logN)
Blindseer [39] 3 7 7 3 O(logN)
ECSTORE 3 3 3 3 O(logN)
?: n/a. means the system does not require an index for encrypted search.

Table 1: Characterization of representative EDBs.

2 Background and Preliminaries

2.1 Server-side Encrypted Search
Organizations are increasingly transferring sensitive data to
cloud databases and asserting a need for data confidential-
ity during data processing. To meet this demand, Encrypted
Databases (EDBs) [1, 2, 17, 41] typically employ fully homo-
morphic encryption algorithms [44] to encrypt value fields
in data stores, allowing for arbitrary computations on en-
crypted values without decrypting them in an untrusted cloud.
However, despite the rich computational capabilities it offers,
homomorphic encryption lacks support for encrypted search.

To enable server-side encrypted search, much prior works
have explored the use of searchable encryption algorithms
to encapsulate primary keys into searchable ciphertexts, as
shown in Table 1. CryptDB [41] uses deterministic encryp-
tion [12] and order-preserving encryption [5] to generate mul-
tiple searchable ciphertexts for a given key, then builds multi-
ple indexes to support various query types. While CryptDB
is time-efficient with logarithmic complexity, it lacks support
for detecting integrity breaches against compromised servers,
which is a common threat in public cloud [18]. HElibDB [17]
relies on Fermat’s Little Theorem [46] to directly assess the
equivalence of homomorphically encrypted data without the
need for indexing, but it necessitates linearly scanning the
entire database. Dory [19] offers linear search functionalities
specifically tailored for encrypted file stores. However, its
approach to constructing file indexes using one-way func-
tions [7, 31] is not adaptable to other database types.

ECSTORE aims to be a generalized system that can effi-
ciently support a full set of index operations while provid-
ing both data confidentiality and query integrity guarantees
against a compromised server. Nevertheless, prior works can-
not fulfill all these goals in an efficient manner.

2.2 Encryption-Compression Co-designs
While some prominent EDBs (e.g., CryptDB) have achieved
logarithmic search complexity, empirical evaluations reveal
that the actual performance often deviates from theoretical ex-
pectations. This discrepancy primarily results from the linear
expansion of ciphertext size by data encryption, consequently
increasing the number of data accesses to persistent storage.
Moreover, this effect becomes particularly pronounced when

faced with dynamic workloads involving frequent insertions
as the index rapidly saturates main memory. Compression
is widely used in databases [22, 28, 34] and has potential to
mitigate the performance penalty brought by encryption. We
discuss two strawman designs that combines the power of
encryption and compression and show their limitations.

The first approach is to encrypt over compressed data by
utilizing compression techniques such as run-length encod-
ing [25] and distributed source-coding [28]. These methods
enable query execution using indexes built on encrypted and
compressed data. However, their effectiveness in achieving a
high compression ratio is limited to specific columns, result-
ing in an overall low compression ratio. For instance, reported
results indicate that utilizing such techniques only yielded a
compression ratio of 1.6 on the Conviva dataset [55].

An alternative approach is to encrypt the data and subse-
quently apply compression. Due to the pseudorandomness
of encrypted data, this approach will generate non-functional
blobs that are not searchable. To address it, clients are required
to use a dictionary table [13] (i.e., an additional index) that
maps uncompressed encrypted values to compressed codes.
Concretely, clients search specific encrypted values in the
table to find associated compressed code and submit queries
parameterized with the code. The server conducts lookups
by linearly scanning the database and comparing every code.
Finally, clients decompress the retrieved code and decrypt
it for results. However, the use of dictionary tables is ineffi-
cient because clients must do extra reads for compression and
decompression that would reduce the lookup throughput.

ECSTORE is designed to harness the advantages of both
encryption and compression by achieving a high index com-
pression ratio while incurring minimal performance overhead.
It is also independent of workloads and data types.

2.3 Preliminaries

Tree-based Index. In this paper, we aim at devising an en-
crypted and compressed index structure capable of supporting
all operations in traditional tree-based indexes. Given x and y
as keys and v as value, the index S supports the operations:
(1) member(x) = TRUE if x ∈ S, FALSE otherwise.
(2) lookup(x) returns the value associated with key x ∈ S.
(3) range(x,y) returns all the elements where x≤ key ≤ y.
(4) insert(x,v) puts an element with key x and value y to S.
(5) delete(x) deletes the element with key x from S.
(6) update(x,nv) runs delete(x) followed by insert(x,nv).
(7) bulkload(x[N]) is used for initializing or rebuilding index

with N elements.
We assume that the keys are unique, although supporting

duplicate keys is feasible by utilizing an overflow list [48].
We also assume that the index is based on a single column.
In cases necessitating searches across multiple columns, EC-
STORE manages disjunctive queries by independently search-

3

ing each column and merging the results, but it does not sup-
port conjunctive queries currently. Implementing support for
conjunctive queries would entail ECSTORE’s integration with
multidimensional indexes like k-d tree [57], which is orthogo-
nal to the scope of this work.
Bloom Filter. Our membership-based index structure is based
on the Bloom filter [9], a compact data structure designed for
membership testing. It operates by using a single set to store
the hash values of all elements. Specifically, a Bloom filter
B is represented by an m-bit array and employs k indepen-
dent and uniformly distributed OWFs, i.e., cryptographic hash
functions {Hk}. Each hash function maps an element to a po-
sition in the array. To insert an element x into the filter, we
compute its hash using {Hk} and set all the bits at the corre-
sponding indices in B to 1. For testing whether an element y is
a member of the set, we again hash y using {Hk}. If any of the
bits at the corresponding indices in B are 0, then y is definitely
not in the set (i.e., zero false negatives). Conversely, if all the
bits at the corresponding indices in B are 1, y is considered to
have a high probability of being in the set, albeit with a small
configurable false positive rate [9].

It is important to note that while prior EDBs have utilized
Bloom filters to build indexes, they target specific query sce-
narios with high complexity. For instance, Dory [19] sup-
ports only encrypted keyword search on file stores with linear
complexity. While Z-IDX [24] and Blindseer [39] achieve
logarithmic complexity, they overlook the threat of integrity
breaches in an outsourced database. ECSTORE differentiates
itself by aiming to facilitate general queries and provide both
data confidentiality and query integrity guarantees.
Learned Index. Given a key, learned index [11] maps it to the
position in a sorted array of keys, which thus is considered as a
trained model. Learned index builds a hierarchy of models to
locate a key. During a lookup, the higher-level model predicts
the model at the next level, and the leaf-level model computes
the final prediction for the key’s position in the sorted array.
Finally, the learned index applies binary search to rectify
inaccurate predictions based on a given error bound ε.

PGM [22] is a space-efficient and updatable learned index.
It uses linear models (or segments) and divides keys into
different segments to approximate the positions of all keys
in the sorted array within ε distance. The space efficiency
of PGM stems from the fact that linear segments require
only constant space (for slopes and intercepts) and constant
query time, independent of the total number of keys to be
indexed. Each segment of PGM specifies the first key covered
by next-level segment, enabling recursive index construction
on the sorted keys of segments at lower levels. To locate a
key, PGM predicts positions at each level and corrects them
immediately. This process continues until convergence to a
leaf-level segment. For insertions, similar to LSM-tree [38],
PGM separates keys into subsets. Each insertion involves
finding a series of non-empty sets, merging them into a large
subset, then bulkloading a new index on the large subset.

3 Overview

3.1 System Setup
Entities. Same as existing EDBs [37, 55], ECSTORE follows
a cloud-hosting model consisting two roles: the hosting server
(which can be distributed) responsible for providing query
services, and the client (e.g., banks and hospitals) issuing
queries to the server for using the services. The client can
have multiple endpoint machines sharing the same encryption
keys, which are inaccessible to the server. In line with [20],
we assume the cloud provider is motivated to ensure server
availability, by either bringing the failed server back online
or replacing it promptly [20, 29].
Data model. We employ the key-value data model to illus-
trate our design for its simplicity. The server-side EDB con-
tains two columns storing the primary keys and their respec-
tive values. In ECSTORE, a key is stored as an irreversible
identifier, achieved by applying one-way functions (OWFs)
such as SHA-256 [27] to transform the original plaintext key.
Irreversibility means that these identifiers cannot be reversed
back to plaintext keys even if the OWFs are known. Noted that,
while OWFs are deterministic schemes, they are sufficiently
as secure as randomized schemes in our setting because the
primary keys in an EDB are unique. This determinism allows
ECSTORE to maintain a sorted index based on these identi-
fiers, enabling the clients to directly query on the EDB. Values
are encrypted via fully homomorphic encryption [54] before
being inserted to the EDB, to facilitate arbitrary computations
without decryption.

In ECSTORE, all key-value pairs (we call a key-value pair
and an element interchangeable) are versioned. This involves
a client maintaining the latest version of elements in a local
version table (depicted in Figure 2), and keeping it synchro-
nized with other clients. In such a case, clients are assumed
to have obtained the latest version of an element before sub-
mitting a new update query to that particular element.

3.2 Threat Model and Guarantees
Similar to prominent EDBs [15,20,35,41], we adopt a strong
threat model in which a malicious adversary A can cor-
rupt servers and arbitrarily deviate from ECSTORE’s pro-
tocol to disrupt query services. Specifically, A can either
passively observe or actively manipulate query results and
tamper with stored data in the server via modification, replay,
or deletion [58]. Given the growing reliance on cloud-hosted
databases and dependence on third-party database administra-
tors, we believe this threat is increasingly important. However,
in line with prior research [19, 41], we assume that A is inca-
pable of reversing OWFs or compromising cryptographic en-
cryption keys. This threat includes compromises of database
software and access to the RAM of physical machines.

We also assume that the clients are trusted and authorized
to access all server-side data (e.g., because the client is the

4

data owner). In ECSTORE, we focus on protecting the data
from a server-side adversary. Consequently, we assume that
the adversary A does not have control over any client, thereby
lacking the capability to execute any queries (e.g., insert,
delete, update) through a client.
Out-of-scope Attacks. ECSTORE is not designed to hide
side-channel information such as data access patterns or el-
ement sizes. The security of ECSTORE is not perfect as it
could reveal side-channel information that corresponds to the
type of computation that queries perform, such as equality
comparisons and sorting operations. Achieving ‘optimal’ se-
curity requires ECSTORE to integrate with recent theoretical
cryptography works that conceal all side-channel informa-
tion [40, 49], which is prohibitively expensive. However, it
is notable that unlike prior compression methods (e.g., run-
length encoding [25]) that expose data frequency, ECSTORE’s
compression avoids introducing additional data frequency in-
formation, thus does not augment such vulnerabilities.
ECSTORE’s Guarantees. The confidentiality guarantee is
twofold. First, ECSTORE ensures that all primary keys are
irreversible, in the sense that a computationally bounded ad-
versary A cannot reverse the OWF-transformed primary keys
to retrieve plaintext keys. Second, ECSTORE protects values
with a strong and standard encryption scheme (fully homo-
morphic BGV [23]), and protects the names of columns and
tables with AES-256 in CBC mode, which provides semantic
security [54]. Meanwhile, ECSTORE ensures query integrity
by precisely detecting any manipulations in query results.

3.3 ECSTORE’s Workflow Overview

The architecture of ECSTORE is shown in Figure 2. The
server hosts a tree-based index (ECTREE) in the main mem-
ory and stores elements at the leaf level physically, following
the common practice of B+-tree [14]. The server also hosts
a list of MAC tags, each corresponding to an element. The
client interacts with the server through ECSTORE’s query
manager module, consisting of three components. The profiler
transforms plaintext query parameters into cipher identifiers
for server-side encrypted search and maintains cryptographic
keys inaccessible to the server. The ECTREE cache stores a
partial index, including the ECTREE root for authentication
and the leaf nodes (primary keys) for write operations (i.e.,
insert(x,v), delete(x), update(x,nv) and bulkload(x[N])). The
version table maintains the latest version of all elements for
both query authentication and write operations. ECSTORE’s
integrity monitor module detects breaches in query results for
read operations (i.e., member(x), lookup(x), and range(x,y))
by interacting with the local ECTREE cache and version table.

For read operations, like lookup(x) in Figure 2, the client
first transforms plaintext parameter x into a secure primitive
called subfilter (described in §4.1). This primitive, denoted as
tx, acts as a cipher identifier for x to search and is irreversible.
The client encrypts query via AES, signs it, and sends to

Activated / Inactivated ECStore component A lookup / Insert query flow

Query Manager

ECStore Client

ECTree
Cache

Ver.
Table

Lookup(x)

Profiler

Integrity
Monitor

5

Output: v

N
et

w
or

k

ECStore Server

Key

ECTree

Mac

tx pos
...

v

Mack

N2's PGM

N1's PGM

Seg

zip.

N13

N3

Seg

Seg

N3's PGM

N
et

w
or

k

Query Manager

ECStore Client

ECTree
Cache

Ver.
Table

Int Monitor

Insert(k,v)

Mackpos

2

1

k k
Profiler

Value

1

tk

N2Lookup(tx)

<tx,v>,proof Ack
4

Insert(tk,v,

pos,Mack)

(Fig. 1)
2

4

Key[..]

Figure 2: The architecture behind ECSTORE.

the server via a TLS-enabled link (2). The server will drop
the connection if malformed queries (e.g., those with invalid
signatures) are received. The server traverses ECTREE using
tx to locate the requested element (3), returning both the
element <tx,v> and a proof to the client (4). The client
fetches essential data from the ECTREE cache and version
table to verify the proof (5 , described in §4.4), and eventually
outputs the decrypted value if verification succeeds.

For write operations, like insert(k,v) in Figure 2, the client
first transforms the key k into identifier tk, then finds k’s pre-
decessor position, pos, using ECTREE cache, and generates
the MAC tag, Mack, for the element. Subsequently, the client
sends a query parameterized with tk,v, pos and Mack to the
server (2). On the server side, the ECTREE locates the in-
sertion position for element <tk,v> by finding the successor
position of pos then adds the element (3). Finally, the server
adds Mack to the Mac list and returns an Ack to the client
(4) to signify the completion of the write operation.

Overall, the highlight of ECSTORE lies in its ability to
provide both data confidentiality and query integrity, while
supporting a full set of index operations with high efficiency
(with logarithmic search complexity and compression). This
is primarily achieved by ECTREE secure index, featuring a
new insight of membership-based logarithmic search and over-
coming the incompressibility of prior cryptographic methods.

4 Design

4.1 ECTREE Construction
Opportunity: Bloom Filters. In the context of encrypted
search, preserving the onewayness property of primary keys
suffices as these keys are exclusively used for lookups, unlike
values. Additionally, assuming the keys are unique (§2.3) and
the server does not have control over any client to execute any
queries such as insert, delete and update (§3.2), it is infeasible
for adversaries to reverse one-way transformed primary keys
by lauching brute-force or dictionary attacks [6, 13].

The conventional Bloom filter [9] relies on One-Way Func-
tions (OWFs) like SHA-256 to uphold onewayness, as it stores
only the cryptographic hashes of elements rather than the orig-
inal plaintext keys (§2.3). Unfortunately, the Bloom filter is
monolithic in nature since all elements are allocated to a single

5

E.g., Lookup(x2)

Bitwise check

Traversal path

x1 x2 x3

ID 110010 111000 001110

Ptx
OWFs

Lookup('111000')

1 01111

1 00

10 11
X

0 1 11 000 01
XStop! Stop!

00
Hit!

1 1 1

1 0 1

Storage (elements)
Index

C
lie
nt

Se
rv
er

x1 x2 x3

Figure 3: ECTREE’s core concept of membership-based search.

set (a bit array). As a result, it can only support membership
tests, i.e., confirming the presence of an element (hash) within
a set. However, it is not capable of serving as an index for
precisely locating a given key.
Our approach: Subfilter-based ECTREE Index. We ob-
serve that the onewayness nature of the Bloom filter aligns
perfectly with the encrypted search demand for primary keys,
thus in our preliminary design, we decompose the monolithic
Bloom filter into multiple subfilters, with each subfilter solely
storing the hash (in bits) for a single element.
Definition 1 (Subfilter). A subfilter is the Bloom filter for an
individual element, i.e., only one element is assigned to a set
for membership testing.

Figure 3 exemplifies the idea of constructing an ECTREE
using subfilters. Specifically, each subfilter denotes a primary
key (e.g., "111000" representing x2 after transformation via
OWFs) for indexing. These subfilters, sharing a consistent
array size, are positioned at the leaf layer and arranged in an or-
der aligned with plaintext keys. Each inner node in ECTREE is
determined by performing entry-wise OR gate computations
on all its child nodes’ subfilters. Given subfilters with length
m, for an inner node inner with p child nodes {cn1, . . . ,cnp},
each bit in the inner node’s subfilter is computed as

inner[i] = cn1[i] OR ... OR cnp[i] , ∀ i ∈ [0,m] (1)

The design rationale behind ECTREE is that, if any entry in
a child subfilter holds the "1" bit, Equation 1 ensures that the
corresponding entry in its parent subfilter will also possess
the "1" bit. This principle guarantees that if an element exists
in a particular node, it must also exist in its parent node. We
term this approach membership propagation, i.e., the member-
ship information of primary keys (identifiers) is propagated
upward to the root, and later facilitates top-down logarithmic
traversal, while preserving irreversible confidentiality inher-
ited from OWFs employed in generating subfilters.

4.2 ECTREE Operations
Next, we describe the procedures for index operations and the
algorithms to dynamically adjust ECTREE’s structure.

[2 4 5] [0 2 5] [0 4 5][0 2 4]

[0 2 4 5] [0 2 4 5]

[0 2 4 5]

N2

N2's view

4 02
5

N1

N3

[245] [025] [045][024]

[0245] [0245]

[0245]

Lookup([024])

[245] [025] [045][024]

[0245] [0245]

[0245]

Ideal path Lookup([024])Hallucination

After FADA

Hallucination
Detected

Lookup([024])
(Algo.2)

N1 N1

N2 N2N3 N3

1

2

Figure 4: Membership hallucination might happen in ECTREE due
to false positives, leading to redundant index traversals.

Lookup Queries. The search process in ECTREE begins at
the root node and involves conducting membership tests by
comparing subfilters to determine the traversal path. As de-
picted in Figure 3, to look up a key, the client transforms the
query parameter into a subfilter to locate the corresponding
value via ECTREE. On the server side, during the traversal of
inner nodes, ECTREE determines the path (shown in green)
with subfilter comparisons. These comparisons verify if ev-
ery "1" bit in the parameter’s subfilter exists in the current
child node’s subfilter. Successful verification leads ECTREE
to progress to that child node until reaching the bottom layer.
At the bottom leaf layer, a leaf node validates the match of
every bit, as each subfilter exclusively contains one key. Our
methodology is outlined in Algorithm 1.
Challenge: Membership Hallucination. One subtle case is
that, unlike a B+-tree that relies on numerical comparisons,
ECTREE’s subfilter comparisons may inadvertently generate
false positives (FPs). These FPs can lead to redundant index
traversals wherein multiple ECTREE nodes pass membership
tests, despite there being only one correct traversal path. We
call this phenomenon membership hallucination. In the worst-
case scenario, if a lookup navigates through an exponential
number of paths, the resulting complexity would degrade from
logarithmic to linear.

To illustrate, Figure 4 shows a hallucination example. As-
suming the utilization of 6-bit subfilters with three OWFs, for
clarity, subscripts denote the positions of "1" bits within each
subfilter (e.g., [245] signifies a subfilter "001011"). Suppose
a client submits a lookup query parametered with [024]. Ide-
ally, an ECTREE should follow the path: N1→ N3→ [024]
(in green). However, since both N2 and N3 pass the member-
ship test for [024] (i.e., the 0th, 2nd and 4th bits are "1"), the
ECTREE mistakenly searches the entire left branch, showing
that hallucination leads to redundant lookups (in red).

We observe that such redundancy stems from the undi-
rected membership propagation. Specifically, N2 in Figure 4
inadvertently includes [024] by simply taking the union of
its child nodes, resulting in a FP where not all "1" bits origi-

6

Algorithm 1: ECTREE Lookup
1 Input: τ: the root node of ECTREE, k: the lookup key
2 Output: isFound: indicates whether k is found, v: the value
3 Function Lookup(τ, k) do
4 if isLea f (τ) then

O Every bit should match (Def 1)
5 if k.sub f ilter == τ.sub f ilter then
6 return <True, τ.value>
7 if isInner(τ) then
8 child[]← the child nodes of τ

9 for each c in child do
O Match ’1’ bits and identify
membership hallucination

10 if τ ∈ c && !IsMemHall(c, k) then
11 return Lookup(c,k)
12 return <False, Null>

nate from a single child node. Thus, we detect FPs by letting
ECTREE’s inner nodes store an additional direction view, in-
dicating the source of every "1" bit. In Figure 4, the view of
N2 shows that the 4th bit originates from its left child, the 2nd

bit is from both child nodes and the 0th bit is from its right
child. By analyzing this direction view, ECTREE will stop
traversing N2’s branch even if N2 contains the requested [024]
because N2’s view reveals that the 0th bit and 4th bit originate
from different sources, indicating that the requested key is not
a member in N2’s branch.

Based on the above observation, we introduce a FP-aware
Hallucination Detection Algorithm (FADA) to identify false
postives and eliminate redundant traversal paths for ECTREE
lookups. Specifically, the direction view of an ECTREE node
is formed as a table T , where the rows of T represent sub-
scripts of "1" bits in N’s subfilter, and the columns denote
identifiers of child nodes containing these specific "1" bits.
FADA takes the query parameter’s subfilter Sub as input and
outputs whether Sub is a hallucination of N, by verifying the
Common Child Set (CCS) for Sub in T .
Definition 2 (Common Child Set (CCS)). Given a requested
subfilter Sub, the CCS of an ECTREE node N comprises a
collection of N’s child nodes, wherein each node in the set
encompasses all "1" bits present in Sub.

To compute the CCS (parameterized with node N and tar-
get Sub), we simply enumerate the child nodes and checking
corresponding bits. Specifically, if all the "1" bits in Sub are
present in a child node’s subfilter, the identifier of that node
is added to the CCS. To determine the occurrence of halluci-
nation, the size of the resulting CCS is checked. An empty
CCS implies the absence of N’s child nodes that encompass
all "1" bits present in Sub, indicating that N is not part of the
traversal path for the current data lookup; otherwise, N is on
the traversal path. Algorithm 2 shows our methodology.

In summary, ECTREE supports lookup queries by first com-
paring subfilters, and then employing FADA to detect mem-
bership hallucination to ensure correct index traversal paths
(line 10 in Algorithm 1). Consequently, as a tree-based in-
dex, the resulting complexity of ECTREE’s encrypted search
scales logarithmically with respect to the size of the EDB.

Algorithm 2: FADA (Hallucination Detection)
1 Input: N: the node of ECTREE for check, k: the lookup key
2 Output: isFound: indicates whether k is a hallucination of N
3 Function IsMemHall(N, k) do
4 child[]← N’s child nodes
5 pos[]← positions of "1" bits in k’s subfilter
6 isMem← True
7 for each c in child do
8 for each p in pos do
9 if c.sub f ilter[p]! = "1" then

10 isMem← False
11 break

O Not a hallucination (CCS is not φ)
12 if isMem then
13 return False . Algo 1 continues
14 isMem← True
15 return True

Index Inserts. Apart from lookup queries, the index should
handle insert operations, while maintaining the strict order
guarantee for the index (keeping subfilters in order at the leaf
level like a B+-tree). Since subfilters are OWF-transformed
identifiers without orders, to achieve this requirement, we let
the client maintain an ECTREE cache to locate positions for
insertions on the server side.

Specifically, the client-side ECTREE cache retains a partial
index, including the root node of ECTREE and the primary
keys associated with leaf nodes. The cache may contain multi-
ple root nodes because the sever might maintain multiple split-
ted ECTREEs due to index adjustments under dynamic work-
loads (discussed next). Each root node in the cache serves as
an identifier to locate a specific index for insertions and is
also used for query authentication (§4.4). To insert an element
keyed with k, the client requests the local cache to retrieve a
root node r (indicating the index where the insertion should
occur) and the predecessor of k, followed by transforming
the predecessor into subfilter Spre. The server-side ECTREE
(rooted at r) locates Spre at the leaf nodes and inserts the ele-
ment next to Spre, thus keeping the leaf nodes monotonically
increase, which is crucial for facilitating range queries.

After finishing the insert operation, we backtrack along the
search traversal path in the opposite direction and update the
subfilters and direction views associated with the nodes along
this path. Additionally, we judge whether the ECTREE should
trigger an adjustment to keep the FP rate bounded.
ECTREE’s Adjustment Strategy. Recall that, FADA (Al-
gorithm 2) effectively detects FPs in a static setting where
only read operations occur. However, its effectiveness dimin-
ishes under dynamic workloads (e.g., inserts). We can think
of an extreme case when all bits in top-level subfilters even-
tually become "1". This case arises when more and more
newly inserted elements propagate their membership to the
root (Equation 1), given that subfilters have a constant size.
Consequently, this leads to increased FPs for data lookups. To
maintain a bounded FP rate within ECTREE, we trigger the
splitting of nodes when certain conditions are satisfied. We
focus on two core issues: When to adjust and How to adjust?

7

N6

N4

N5

1

1

Lookup(N6)

N6

N4

N5

1

1+1

N7

1

N6

N4

N5

1+1

2+1

N7

1
Best Split Combo: # of Hallu:{N4 N5} + {N6 N7}

✂

0

Lookup(N5) Lookup(N6)Insert [...]

Figure 5: An adjustment example based on edge-weighted graph.

• When to adjust? We propose two main criteria to decide
whether to trigger adjustment on an ECTREE node.

First, the number of inserted elements in an ECTREE rooted
at r is at least α times larger than the elements in the last adjust-
ment. This condition is expressed as r.insert_num

r.total_num ≥ α, where
r.insert_num increments with each insertion and r.total_num
is the number of elements by the time of the last adjustment.
α is set to 2 by default, which is derived from the logarithm
methods of PGM [22], i.e., always triggering the split process
for an index when the inserted elements is twice as much
as elements contained in the previously adjusted index. This
criterion effectively reduces the frequency of adjustments.

Second, the ratio between the number of FADA-detected
hallucinations on a node n and the insertions in an EC-
TREE rooted at node r exceeds a given threshold β, i.e.,

n.hall_num
r.insert_num−r.total_num ≥ β. Hallucinations negatively impact
performance by requiring direction view checks for lookup
operations. Therefore, an adjustment should be triggered if an
excessive number of hallucinations are observed on a node.
By default, we set the threshold β = 0.1 to achieve an appro-
priate adjust rate. To further choose proper parameters, we
study the parameter sensitivity for α and β in §5.
•How to adjust? Upon detection of a hallucination by FADA,
we catalog the nodes related to the hallucination as an edge-
weighted graph. The second condition, triggered by an over-
weighted edge (i.e., excessive hallucinations) and a certain
number of insertions causing FPs, is exemplified in Figure 5.

Consider the leaf nodes N4 to N7 of the ECTREE in Fig-
ure 4. Following a series of insertions, three lookups are
conducted, and FADA detects and records hallucinations for
each lookup: Lookup(N6), or Lookup([024]), establishes two
edges between N4 and N5 as these nodes propagate a hallu-
cination of N6 ([024]). Similarly, Lookup(N5) increases the
weight of the edge between N5 and N6 and adds an edge with
N7. Subsequent Lookup(N6) further raises the weight of the
edge between N5 and N6, triggering the second condition, thus
N5 and N6 need to be split into two indexes.

To identify the best split combination, we employ Kruskal’s
algorithm [43] to compute the Minimum Spanning Trees of
the graph, aiming to minimize the total number of hallucina-
tions (weights) in each split index. Ultimately, we determine
the combination of {N4, N5} and {N6, N7} and execute bulk-
load to generate two new ECTREEs. This division is chosen
because it results in the lowest total number of weights (hal-
lucinations) in these two split indexes (i.e., 0).

More Operations. Range queries identify elements whose
keys fall within a specified range by converting the range
parameters into subfilters, locating the corresponding leaf
nodes using lookup operations, and retrieving all elements
positioned between these leaf nodes due to ECTREE’s mono-
tonic nature. Delete queries are supported by looking up the
entry of the element and marking the type of that entry as
NULL. Subsequent lookup queries for this deleted key lead
to traversal to a NULL entry, indicating the non-existence
of the key. Update queries come in two forms. One involves
modifying the key itself, executed by combining a delete oper-
ation with an insert operation. The other type involves solely
modifying the payload and is supported by searching for the
key and overwriting the existing value.

4.3 ECTREE Compression TODO:(1 fig, 1
algo).

A core index challenge: size and cost. Despite ECTREE’s
efficient tree-based index structure, which facilitates logarith-
mic search complexity, achieving a low search complexity
alone is insufficient for achieving high-performance encrypted
search. The reasons are two fold. Firstly, as the total number
of items increases, each ECTREE node experiences expo-
nential growth in membership information storage due to
the membership propagation design (§??). Consequently, the
index size significantly expands, adversely affecting search
efficiency. Secondly, even in a static setting, the false positive
issue, attributed to the fundamental nature of Bloom filters,
further amplifies the size of each minifilter node.

To illustrate, let’s consider a database with 220 static items
and the user aims for a low false positive rate of 1× 10−3,
same as the configuration in [50], each minifilter in ECTREE
would need to be approximately 1.79MB in size according
to the Bloom filter theory [9]. Consequently, the entire EC-
TREE would require a substantial amount of storage space,
around 3.57TB, which is impractical. The significant increase
in space occupancy compared to a plaintext database index
results in a notable performance decline due to expensive I/O
operations involving secondary storage.

Facing this challenge, our contention is that relying solely
on achieving theoretical logarithmic search complexity is in-
sufficient for achieving high-performance encrypted search,
even though it represents a significant improvement over lin-
ear search methods [17, 19]. Instead, an encrypted search in-
dex should adopt a compact design to ensure that the overall
query performance remains manageable and cost-effective.
The compact design. As depicted in Figure 6, during index
construction, ECTREE preserves light index nodes and com-
pacts giant index nodes that exceed a user-defined memory
budget B using two steps below.
• Step 1 (From bits to offsets). Recall that in ECTREE, each
index node (i.e., minifilter) is represented as a one-item Bloom
filter (§??), which is a bit array consisting of only ‘0’ and ‘1’

8

1 010 10 1 01 10
An original (uncompressed) BIndex node

... ...

152 2318 29 5533 7264

last '1' bit1st '1' bit

2,sl0,ic0 29,sl1,ic1

8883 9389 98

72,sl2,ic293,sl3,ic3

= 1

2,sl0,ic0

Error bound
Step 1

Step 2

2nd 3rd ...

Figure 6: The construction and a running example that show our
compact design for ECTREE. Step 1 extracts an original ECTREE

node into offset representation wherein the ith entry is the position
of the ith ‘1’ bit. In Step 2, we uses the Piece-wise Linear Approxi-
mation model [22] to compact and search the extracted offset array.

bits. However, only the ‘1’ bits contain informative data since
membership tests only involve checking if all ‘1’ bits are
present in a filter. Thus in step 1, we extract the positions of
all ‘1’ bits from the filter, creating a new offset array. This
extraction process allows us to discard unnecessary bits and
avoid wasting primary storage resources.

• Step 2 (Linear Approximation using PGM [22]). Al-
though step 1 reduces the size of giant ECTREE nodes, the
size still increases exponentially with the total number of
records n. Fortunately, we find that the linear compression
technique known as Piece-wise Linear Approximation, partic-
ularly the PGM [22], is highly suitable for further compressing
the extracted offset array in our specific setting.

Running example. Figure 6 provides a running example of
searching a compressed ECTREE node using Algorithm ??.
Each accessed node in the search path is highlighted in blue.
We assume the compressed ECTREE has an error bound ε= 1
and the key being searched is k = 83.

The search begins from the root segment s′ = l0[0][0]. The
next position, b f s′(k)c= bk ∗ sl0 + ic0c, is computed to be 1
for the next level. The search then proceeds to locate k within
the range [1−ε,1+ε] in l1, considering the keys [2, 29, 72]. It
is determined that the next segment for the search is s′′ = l1[2]
because k > 72. Finally, the position for the next (leaf) level,
l2, which represents the extracted offset array, is computed
by evaluating b f s′′(k)c= 8. Consequently, a binary search is
performed to search for k within the range [8− ε,8+ ε] in l2.
Ultimately, it is found that k is located at position 9 since A[9]
= 83.

In the compacted ECTREE, Algorithm ?? functions as the
internal search API of minifilter.contain(k) in Algo-
rithm 1. Combined, they constitute the complete encrypted
search algorithm (without metadata protection) of ECSTORE.

4.4 ECTREE-driven Query Authentication

So far, we have assumed that the server adheres to our proto-
col in an honest-but-curious manner. Next, we show how we
leverage ECTREE to detect malicious manipulations, includ-
ing modifications, replays, and dropping (deletions) of query
results through the enforcement of two authentication rules.
• Rule 1: Freshness Validation. This rule serves to detect any
query result modification or replay attempts by using MACs.
Two key conditions define the validity of a MAC tag. First, a
MAC tag should only be valid for the latest update to prevent
replay attacks. Second, a the MAC tag should not apply to
other elements. Thus, we compute the MAC over both the
key (subfilter) and the version of the element obtained from
the local version table. For each insert or update, the client
includes an additional MAC tag for the element by appending
a 256-bit tag to the tail of the subfilter.
• Rule 2: Completeness Validation. This rule aims to detect
drops and deletions within query results by validating that the
results align with the specified range and that the recomputed
ECTREE root matches the ground-truth root stored in the local
cache. Specifically, using a range query as an example, the
server first searches for elements within the specified range
(rl and rr). It then generates a proof that includes a node’s
subfilter to the immediate left of the lower-bound (Rl) and
another subfilter to the immediate right of the upper-bound
(Rr). Additionally, the server retrieves the subfilters of all left
sibling nodes in the left traversal path and the subfilters of all
right sibling nodes in the right traversal path.

Upon receiving the proof, the client validates it via two as-
pects. First, it confirms that the range of Rl is smaller than the
left boundary, i.e., Rl .range< rl .range, and it also verifies that
Rr.range > rr.range. Second, thanks to the Merkle-tree-like
construction of ECTREE, the client recomputes the ECTREE
root in a Merkle-tree fashion using the requested query re-
sults and their siblings. Then, it compares this recomputed
root with the ground-truth root stored in the ECTREE cache,
which was pre-stored by the client and synchronized for each
update and index adjustment. Any mismatch between the two
subfilters signifies drops or deletions within the query results.

In sum, Rule 1 detects modifications or replays and Rule
2 detects drops or deletions in query results. Together, they
form a cohesive query authentication protocol, achieved by
the unified utilization of ECTREE for encrypted search.

5 Evaluation TODO:add comp ratio and para
sens study.

Testbed. All experiments were done on our cluster machines,
each equipped with a 2.60GHz Intel E5-2690 V3 CPU, 64GB
memory, 40Gbps NIC, and 24 cores. Each node, including
clients, databases, and the proxy, was executed in a docker
container. The average ping latency between the nodes was
set at 0.17ms with the aid of Linux traffic control [8].

9

9.5x
10x

2.5x
3.0x

16x
16.5x

Nexus-MySQL CryptDB-MySQL HElib-MySQL

6x
7x

0.58ms
10.5x 86x

88x

Point Query0x
0.5x

1x
1.5x

2x
2.5x

0.55ms

Range Query0x
0.5x

1x
1.5x

2x

N
ot

 S
up

po
rt

ed

0.87ms

Join0x
0.5x

1x
1.5x

2x
2.5x 0.57ms

Insert0x
1x
2x
3x

Update0x

0.5x

1x

0.85ms

Delete0x
2x
4x
6x 0.36ms

No
rm

-la
te

nc
y

Figure 7: Normalized end-to-end latency of running TPC-C on all baselines in SQL instances. All systems’ latency results are normalized to
vanilla insecure MySQL (in green dashed line). Values on each red bar indicate ECSTORE’s average latency.

Baseline. We implemented a SQL instance using
MySQL [37] and a NoSQL instance using WiredTiger [16].
We compared ECSTORE with three baselines: CryptDB [41],
HElibDB [?], and vanilla insecure databases (i.e., MySQL
and WiredTiger). CryptDB and HElibDB are imperative HE
databases. CryptDB cryptographically enables point queries
with deterministic encryption (DET) [12] and range queries
with order-preserving encryption (OPE) [5], with separate
indexes. HElibDB utilizes Fermat’s Little Theorem [?] to
directly evaluate the equivalence of HE data but requires
scanning the entire database.

For an apple-to-apple comparison, we expanded upon base-
lines in three ways. Firstly, we upgraded CryptDB’s HE algo-
rithm from partial HE to fully HE BGV [?] to enable arbi-
trary computation on ciphertexts as in ECSTORE. Secondly,
all baselines were extensively implemented on both SQL and
NoSQL instances. Thirdly, we integrated ECSTORE’s core
proxy components into CryptDB and HElibDB to support
multi-party collaborative analytics as in ECSTORE.
Workload and default setting. Since there is no standard-
ized benchmark for evaluating collaborative SQL analytics on
EDBs, for a fair comparison, we evaluated workloads from
recent EDBs [?, 41, 51, 58], which includes the TPC-C bench-
mark [32] for relational databases and a customized workload
for NoSQL key-value stores.

Specifically, we followed the multi-party deployment ap-
proach [49] by first partitioning TPC-C randomly and uni-
formly across databases based on warehouse ID, and assigned
clients to parties based on their associated warehouse IDs.
For customized NoSQL workloads, we simulated governmen-
tal statistics and medical workloads (as described in §??) by
generating 210 fixed-size keys (8 bytes) and values (64 bytes)
in a manner similar to [56], and horizontally partitioned all
key-value pairs across databases as in TPC-C.

To match the setup of existing multi-party query sys-
tems [19, 49], we equipped each party with two databases.
Unless for scalability experiments, we simulated 10 parties.
For the homomorphic setting, we employed HElib’s BGV
implementation [?], using a plaintext prime modulus of 29
and a ciphertext modulus of 1009 to compress ciphertexts
with an expansion coefficient of 4. We ran each experiment
for 60 seconds and collected the result in the middle 30s (i.e.,
15s∼45s) to avoid the disturbance caused by system start-up
and cool-down. We focus on the following questions:
§5.1 How efficient is ECSTORE compared to baselines?

Distributed query latency (in milliseconds)
Systems (in SQL instance) ECSTORE CryptDB
Query type PQ RQ PQ RQ
P1 (client): Parameter transform 0.11 0.13 0.19 0.32
P2 (proxy): Query dispatch 0.12 0.18 0.06 0.1
P3 (database): Data lookup 4e-4 1e-3 2e-4 1e-3
P4 (proxy): Query authenticate 1e-3 1e-3 N/S N/S
P5 (proxy): Key switch & aggregate 0.17 0.21 0.12 0.24
P6 (client): Result decrypt 0.15 0.35 0.21 0.52
End-to-end (∑Pi) 0.55 0.87 0.58 1.18

Table 2: Breakdown and comparison of query latency. PQ and RQ
mean point and range query respectively. P1 (client) means the first
phase of parameter transformation occurs at the client, etc.
§5.2 Can ECSTORE scale to more parties and larger datasets?
§5.3 Does ECSTORE exhibit extensibility?
§5.4 What are the lessons we learned?

5.1 End-to-end Performance
We first evaluated the performance of ECSTORE and baselines
in a fault-free scenario where no integrity breaches occurred
in the query results. The results presented in Figure 7 indicate
that ECSTORE demonstrated a lower latency (between 5.4x
to 16.6x, excluding insert queries) compared to HElibDB.
This is attributed to the use of MFT index by ECSTORE,
which provides logarithmic search complexity as opposed to
HElibDB that requires linear scans to search for equivalent
encrypted data, leading to reduced latency for all read queries.
Priority: read query latency. HElibDB achieved 3x to 3.3x
lower insert latency compared to ECSTORE and CryptDB.
This is because HElibDB simply appends new records to
its storage by trading off the linear search latency on read
queries. In contrast, ECSTORE and CryptDB both maintain
sorted records for encrypted search, leading to higher insert
latency by first looking up an insert position via indexing
before writing a new record to that position. Luckily, it is
worth noting that in the joint query scenario of ECSTORE,
read could occur more frequently (refer to §??), and hence,
we deem it acceptable to make such a performance trade-
off, which has been a common practice in existing insecure
databases [16, 37].
General capabilities with breakdown. On the TPC-C work-
load depicted in Figure 7, ECSTORE achieved 6% to 28%
lower latency. For the representative queries (§??) running
on the NoSQL workload with varying numbers of key-value
pairs, ECSTORE had 32% to 55% lower latency shown in
Figure 10(a). Q2 exhibited higher latency than Q1 because

10

0.4 0.6 0.8 1.0 1.2
Latency (ms)

0.2

0.4

0.6

0.8

1.0

C
D

F

MySQL
Nexus-MySQL
CryptDB-MySQL

(a) Run in a SQL instance

0.3 0.6 0.9 1.2 1.5
Latency (ms)

0.2

0.4

0.6

0.8

1.0

C
D

F

WiredTiger
Nexus-WiredTiger
CryptDB-WiredTiger

(b) Run in a NoSQL instance
Figure 8: Distributions of end-to-end range query latency running
TPC-C and customized key-value workload on all baselines.

Q2 involved range searches and a sum with aggregates while
Q1 simply counted the total number. Both ECSTORE and
CryptDB supported point and range queries with logarith-
mic search complexity; interestingly, ECSTORE still outper-
formed CryptDB in terms of both query latency (verified in
Table 2) and throughput (shown in Figure 9), despite sharing
the same complexity.

Table 2 shows the performance breakdown. CryptDB’s
primary overhead was observed to be in P1 and P6 for crypto-
graphic operations. In contrast, ECSTORE incurred additional
latency in P2 for subfilter comparison at leaf nodes (the time is
covered by index traversal, analyzed in §??), and P4 for query
authentication. Nonetheless, the cryptographic overhead of
CryptDB surpassed that of ECSTORE, ultimately leading to
the overall performance advantages exhibited by ECSTORE.

We then evaluated the latency distribution by running range
queries that accessed 20%∼80% of records on all baselines,
using various workloads. Figure 8 shows that ECSTORE re-
duced the latency for all workloads in comparison to CryptDB.
The latency distribution was affected by the length of queries,
where longer query ranges led to higher latency of lookup,
key switch, aggregation, and decryption. Notably, insecure
databases do not require key switch and decryption. HElibDB
was not evaluated as it does not support range queries.
Performance on mixed queries. Figure 9 shows that EC-
STORE achieved 1.31x to 1.88x higher throughput over
CryptDB on the customized workload with mixed point
and range queries. This improvement is mainly because
CryptDB’s design necessitates frequent shuffling between
the point search index and range search index, whereas EC-
STORE uniformly tackled both query types through a single
MFT index abstraction. The throughput gain is also bolstered
by our homomorphic implementation that employs the batch-
ing strategy (§??).
Robustness under attacks. Next, to assess the robustness of
ECSTORE, we simulated attacks by randomly manipulating
half of the queries running on the KV workload, involving ei-
ther modifying, replaying, or dropping (deleting) query results.
The stable effective throughput in Figure 10(b) demonstrates
ECSTORE’s 100% detection rate, whereas other baselines
with no defenses had significant performance drops. This is
due to ECSTORE’s two-step integrity check (§4.4): the MAC
check detects any modifications or replays on versioned data;
the MFT check detects any drops or deletions of query results.

In sum, ECSTORE presents a robust solution for enabling

1x

202kop/s

665kop/s

112kop/s

418kop/s

204kop/s

911kop/s

134kop/s

620kop/s

298kop/s

1016kop/s

Point Query Range Query Insert Update Delete0.0x
0.1x
0.2x
0.3x 202kop/s

112kop/s

N
ot

 S
up

po
rt

ed

204kop/s 134kop/s
298kop/s

Nexus-WiredTiger CryptDB-WiredTiger HElib-WiredTiger

No
rm

-th
ro

ug
hp

ut

Figure 9: Normalized throughput in NoSQL instances. The green
dashed line is vanilla (insecure) WiredTiger’s averaged throughput.

Q1(28) Q1(220) Q2(28) Q2(220)
Query (database size)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

La
te

nc
y

(m
s)

Nexus (search)
Nexus (others)
CryptDB (search)
CryptDB (others)

0.004 0.008

0.163

21.8%

0.187

22.4%10.3% 12.9%

(a) Example query in §2.2

Nexus CryptDB HElibDB
EDB

0

50

100

150

200

Th
ro

ug
hp

ut
 (k

op
s) No integrity breaches

Under integrity breaches

(b) Effective throughput

Figure 10: Comparison of example query latency and effective query
throughput under integrity breaches.

general queries among multiple collaborative parties, with low
latency and high throughput. ECSTORE favors read query
performance and tolerates moderate write performance down-
grades. ECSTORE is most suitable for applications that priori-
tize read performance and require end-to-end security, which
is common in collaborative scenarios such as financial statis-
tics across banks [?] and medical studies across hospitals [?].

5.2 Scalability

Scale to larger databases. We evaluated baselines with vary-
ing database sizes on the KV workload. As depicted in Fig-
ure 11, ECSTORE’s latency scales logarithmically, match-
ing our complexity analysis in §??. For point queries, both
ECSTORE and CryptDB incurred moderate overhead when
compared to the insecure WiredTiger, while HElibDB had sig-
nificantly higher latency due to its linear scanning approach.
For range queries, ECSTORE achieved a greater performance
advantage than baselines compared to point queries because
ECSTORE’s membership-based indexing is more efficient
than prior cryptographic approaches (as also evident in Ta-
ble 2). HElibDB was not evaluated because it is designed
solely for point searches.
Scale to more parties. We varied the number of collaborative
parties in ECSTORE, ranging from 2 to 10, which is consid-
ered sufficient for collaborative analytics in real-world scenar-
ios [49]. Figure 12 depicts ECSTORE’s throughput-latency
(99th% tail latency) performance on the KV workload. As the
number of parties increased, both ECSTORE’s throughput and
latency increased. Note that the latency gap between different
numbers of parties was more pronounced in range queries
compared to point queries, because the range queries typi-
cally searched, verified, and aggregated more data, leading to
increased query processing time.

11

28 210 212 214 216 218 220

Number of key-value pairs
0.00

0.02

0.04

0.06

La
te

nc
y

(m
s)

WiredTiger
Nexus-WiredTiger
CryptDB-WiredTiger
HElib-WiredTiger

(a) Point Query

28 210 212 214 216 218 220

Number of key-value pairs
0.000

0.125

0.250

0.400

La
te

nc
y

(m
s)

(b) Range Query
Figure 11: Performance comparison with varying database sizes.

0 60 100 140 180 220
Throughput (kop/s)

0.092
0.094
0.096
0.098
0.100
0.102

La
te

nc
y

(m
s)

2 parties
5 parties
10 parties

(a) Point Query

0 30 60 90 120 150
Throughput (kop/s)

0.172
0.174
0.176
0.178
0.180
0.182

La
te

nc
y

(m
s)

2 parties
5 parties
10 parties

(b) Range Query
Figure 12: Performance comparison with varying numbers of par-
ties.

5.3 Extensibility Study
One of the fundamental capabilities of ECSTORE lies in its
use of the MFT secure index to dispatch general queries to
execute in query-dependent HE databases. This query rout-
ing capability is essential for a secure query system and en-
ables ECSTORE to extend its functionality to work seamlessly
with TEE databases [?, ?, 42]: ECSTORE can be extended to
allow collaborative parties to outsource their data to TEE
databases and perform joint queries alongside other parties’
HE databases. Concretely, in this study, the clients initialized
MFTs for both HE and TEE databases and uploaded MFTs to
the proxy for query dispatching. When dealing with queries in
TEE databases, the workflow remained unchanged, involving
parameter decryption within TEE databases, searching plain-
texts in a TEE-shielding B+-tree, and ultimately verifying
plaintext results within the TEE (§??).

To validate this extensibility, we conducted experiments
by varying the proportion of HE and TEE databases in our
default ten-party setting and tested the query latency. We ran
TEE databases using the open-sourced Azure EdgelessDB [?],
which equips a TEE-shielded B+-tree with optimized index
performance. Figure 13 confirms the feasibility of running
a combination of HE and TEE databases for collaborative
query analytics. Furthermore, the comparison between Fig-
ure 13(a) and Figure 13(b) highlights ECSTORE’s primary
advantage in efficiently supporting range queries when com-
pared to baselines, corroborating the findings from previous
experiments.

5.4 Lessons Learned
Cryptographic hash-based security. Cryptographic hash
has been widely adopted in security-critical applications such
as password managers [?,?] and phishing detectors [?], show-
casing its effectiveness in protecting sensitive information.
ECSTORE builds the MFT secure index using cryptographic

0% HE 50% HE 100% HE
Ratio of TEE and HE nodes

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

La
te

nc
y

(m
s)

Nexus
CryptDB
HElib

0.29
0.54 0.63

(a) Point Query

0% HE 50% HE 100% HE
Ratio of TEE and HE nodes

0.0

0.4

0.8

1.2

1.6

La
te

nc
y

(m
s)

N
ot

 S
up

po
rt

ed

N
ot

 S
up

po
rt

ed

N
ot

 S
up

po
rt

ed

Nexus
CryptDB
HElib

0.46

0.87 0.89

(b) Range Query
Figure 13: Extensibility study of running different ratios of HE and
TEE databases in SQL instances distributedly.

hash functions like SHA-256 and inherits the irreversible secu-
rity [?], in the sense that the encrypted data cannot be reversed
to plaintexts even with the knowledge of the hash functions.
This design choice enables practical performance and rich
query capabilities with query integrity, all achieved through
MFT. Unlike previous research (e.g., CryptDB and HElibDB)
that prioritizes a cryptographically stronger confidentiality
of IND-CPA [?], which often sacrifices query capability or
efficiency and overlooks query integrity, the ECSTORE de-
sign strikes a balance between practicality and security. As
such, it is well-suited to connect EDBs for collaborative query
analytics [?, ?, ?, ?] in a malicious threat environment.
Dismissing an alternative design. One may think of using
solely monotonic bias with ORE for building an encrypted
index, which poses two problems. Firstly, this approach limits
query capability to range queries, akin to CryptDB’s OPE
solution. Secondly, it fails to support query authentication
for detecting integrity breaches. In contrast, ECSTORE en-
ables both data confidentiality and query integrity in a unified
manner.
Limitations. ECSTORE has two limitations. Firstly, its secu-
rity is not perfect as it does not hide side-channel informa-
tion related to the specific type of computation performed
by queries, such as equality comparisons and sorting opera-
tions. This is an inherent issue in most practical encrypted
databases that are not integrated with expensive oblivious
algorithms [?, 41, 42].

Secondly, ECSTORE’s MFT secure index is built on a sin-
gle searchable attribute, making it unsuitable for databases
that search over multiple attributes such as graph databases [?,
10]. For these databases, while ECSTORE is capable of han-
dling disjunctive queries by searching each attribute indepen-
dently, ECSTORE cannot handle conjunctive queries without
integrating MFT with multidimensional indexes such as k-d
tree [57], which is an interesting direction for future work.

6 Conclusion
We present ECSTORE, the first secure query system that sup-
ports general collaborative SQL analytics on EDBs, provid-
ing both data confidentiality and query integrity guarantees.
ECSTORE leverages the new Merkle rangeFilter Tree (MFT)
secure index to efficiently dispatch encrypted queries to query-
dependent EDBs, authenticate, and aggregate query results.
Extensive results on both SQL and NoSQL instances shown

12

that ECSTORE is secure, highly efficient, scalable, and ex-
tensible compared to baselines. ECSTORE is open-sourced
and its code is released on github.com/2024asplos405/
Nexus.

References
[1] Tresorit, 2011. Website: https://tresorit.com/.

[2] Keybase, 2014. Website: https://keybase.io/.

[3] Tiktok data breach timeline, May 15 2023.

[4] Ankit Agarwal, Manju Khari, and Rajiv Singh. Detec-
tion of ddos attack using deep learning model in cloud
storage application. Wireless Personal Communications,
pages 1–21, 2021.

[5] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant,
and Yirong Xu. Order preserving encryption for nu-
meric data. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages
563–574, 2004.

[6] Ruqayah R Al-Dahhan, Qi Shi, Gyu Myoung Lee, and
Kashif Kifayat. Survey on revocation in ciphertext-
policy attribute-based encryption. Sensors, 19(7):1695,
2019.

[7] Muhammad Bello Aliyu. Efficiency of boolean search
strings for information retrieval. American Journal of
Engineering Research, 6(11):216–222, 2017.

[8] Werner Almesberger et al. Linux network traffic con-
trol—implementation overview, 1999.

[9] Fabio Angius, Mario Gerla, and Giovanni Pau. Bloogo:
Bloom filter based gossip algorithm for wireless
ndn. In Proceedings of the 1st ACM workshop on
Emerging Name-Oriented Mobile Networking Design-
Architecture, Algorithms, and Applications, pages 25–30,
2012.

[10] Renzo Angles and Claudio Gutierrez. Survey of graph
database models. ACM Computing Surveys (CSUR),
40(1):1–39, 2008.

[11] Andrew W Appel and David McAllester. An indexed
model of recursive types for foundational proof-carrying
code. ACM Transactions on Programming Languages
and Systems (TOPLAS), 23(5):657–683, 2001.

[12] Mihir Bellare, Marc Fischlin, Adam O’Neill, and
Thomas Ristenpart. Deterministic encryption: Def-
initional equivalences and constructions without ran-
dom oracles. In Advances in Cryptology–CRYPTO
2008: 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceed-
ings 28, pages 360–378. Springer, 2008.

[13] Weicheng Cai, Zexin Cai, Xiang Zhang, Xiaoqi Wang,
and Ming Li. A novel learnable dictionary encoding
layer for end-to-end language identification. In 2018
IEEE international conference on acoustics, speech and
signal processing (ICASSP), pages 5189–5193. IEEE,
2018.

[14] Shimin Chen and Qin Jin. Persistent b+-trees in non-
volatile main memory. Proceedings of the VLDB En-
dowment, 8(7):786–797, 2015.

[15] Weikeng Chen, Thang Hoang, Jorge Guajardo, and At-
tila A Yavuz. Titanium: A metadata-hiding file-sharing
system with malicious security. Cryptology ePrint
Archive, 2022.

[16] Rupali Chopade and Vinod Pachghare. Mongodb index-
ing for performance improvement. In ICT Systems and
Sustainability, pages 529–539. Springer, 2020.

[17] Homomorphic Encryption Library Contributors. Helib:
Homomorphic encryption library. https://github.
com/homenc/HElib, 2021.

[18] Henry Corrigan-Gibbs and Dmitry Kogan. Private infor-
mation retrieval with sublinear online time. In Advances
in Cryptology–EUROCRYPT 2020: 39th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14,
2020, Proceedings, Part I 39, pages 44–75. Springer,
2020.

[19] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada
Popa, and Ion Stoica. Dory: An encrypted search system
with distributed trust. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1101–1119, 2020.

[20] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada
Popa, and Ion Stoica. Dory: An encrypted search sys-
tem with distributed trust. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and
Implementation, pages 1101–1119, 2020.

[21] INC Dropbox. Dropbox. http://www. dropbox. com,
2014.

[22] Paolo Ferragina and Giorgio Vinciguerra. The pgm-
index: a fully-dynamic compressed learned index with
provable worst-case bounds. Proceedings of the VLDB
Endowment, 13(8):1162–1175, 2020.

[23] Caroline Fontaine and Fabien Galand. A survey of
homomorphic encryption for nonspecialists. EURASIP
Journal on Information Security, 2007:1–10, 2007.

[24] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive,
2003.

13

github.com/2024asplos405/Nexus
github.com/2024asplos405/Nexus
https://tresorit.com/
https://keybase.io/
https://github.com/homenc/HElib
https://github.com/homenc/HElib

[25] Solomon Golomb. Run-length encodings (corresp.).
IEEE transactions on information theory, 12(3):399–
401, 1966.

[26] IT Governance. List of data breaches and cyber attacks
in 2023, 2023. Accessed on November 2, 2023.

[27] Shay Gueron, Simon Johnson, and Jesse Walker. Sha-
512/256. In 2011 Eighth International Conference on
Information Technology: New Generations, pages 354–
358. IEEE, 2011.

[28] Mark Johnson, Prakash Ishwar, Vinod Prabhakaran,
Daniel Schonberg, and Kannan Ramchandran. On com-
pressing encrypted data. IEEE Transactions on Signal
Processing, 52(10):2992–3006, 2004.

[29] Seny Kamara and Kristin Lauter. Cryptographic cloud
storage. In Financial Cryptography and Data Security:
FC 2010 Workshops, RLCPS, WECSR, and WLC 2010,
Tenerife, Canary Islands, Spain, January 25-28, 2010,
Revised Selected Papers 14, pages 136–149. Springer,
2010.

[30] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, Neok-
lis Polyzotis, and Lianghong Zhu. Consistency guaran-
tees for parallel incremental data processing. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data, pages 1271–1288. ACM, 2019.

[31] Arash Habibi Lashkari, Fereshteh Mahdavi, and Vahid
Ghomi. A boolean model in information retrieval for
search engines. In 2009 International Conference on
Information Management and Engineering, pages 385–
389. IEEE, 2009.

[32] Scott T Leutenegger and Daniel Dias. A modeling study
of the tpc-c benchmark. ACM Sigmod Record, 22(2):22–
31, 1993.

[33] Chunbin Li, Wenfei Ma, and Lifang Qin. Efficient and
accurate approximate query processing on data ware-
houses with learned indexes. In Proceedings of the
2019 International Conference on Management of Data,
pages 1717–1734. ACM, 2019.

[34] Wei Liu, Wenjun Zeng, Lina Dong, and Qiuming Yao.
Efficient compression of encrypted grayscale images.
IEEE Transactions on Image Processing, 19(4):1097–
1102, 2009.

[35] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel.
Incremental {Offline/Online}{PIR}. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1741–
1758, 2022.

[36] Martin Mulazzani, Sebastian Schrittwieser, Manuel Lei-
thner, Markus Huber, and Edgar Weippl. Dark clouds on

the horizon: Using cloud storage as attack vector and on-
line slack space. In 20th USENIX Security Symposium
(USENIX Security 11), 2011.

[37] AB MySQL. Mysql, 2001.

[38] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33:351–385, 1996.

[39] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir
Kolesnikov, Tal Malkin, Seung Geol Choi, Wesley
George, Angelos Keromytis, and Steve Bellovin. Blind
seer: A scalable private dbms. In 2014 IEEE Symposium
on Security and Privacy, pages 359–374. IEEE, 2014.

[40] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan
Deng, Raluca Ada Popa, and Joseph M Hellerstein. Sen-
ate: a {Maliciously-Secure}{MPC} platform for collab-
orative analytics. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2129–2146, 2021.

[41] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. Cryptdb: Protecting
confidentiality with encrypted query processing. In
Proceedings of the twenty-third ACM symposium on
operating systems principles, pages 85–100, 2011.

[42] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
clavedb: A secure database using sgx. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 264–
278. IEEE, 2018.

[43] Dipu Sarkar, Abhinandan De, Chandan Kumar Chanda,
and Sanjay Goswami. Kruskal’s maximal spanning tree
algorithm for optimizing distribution network topology
to improve voltage stability. Electric Power Components
and Systems, 43(17):1921–1930, 2015.

[44] Damien Stehlé and Ron Steinfeld. Faster fully ho-
momorphic encryption. In Advances in Cryptology-
ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings
16, pages 377–394. Springer, 2010.

[45] Hoeteck Wee. On pseudoentropy versus compressibil-
ity. In Proceedings. 19th IEEE Annual Conference on
Computational Complexity, 2004., pages 29–41. IEEE,
2004.

[46] Eric W Weisstein. Fermat’s little theorem.
https://mathworld. wolfram. com/, 2004.

[47] Kevin Wilson and Kevin Wilson. Onedrive. Everyday
Computing with Windows 8.1, pages 71–74, 2015.

14

[48] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang,
Yu Chen, and Chunxiao Xing. Updatable learned index
with precise positions. arXiv preprint arXiv:2104.05520,
2021.

[49] Pengfei Wu, Jianting Ning, Jiamin Shen, Hongbing
Wang, and Ee-Chien Chang. Hybrid trust multi-party
computation with trusted execution environment.

[50] Pengfei Wu, Jianting Ning, Jiamin Shen, Hongbing
Wang, and Ee-Chien Chang. Hybrid trust multi-party
computation with trusted execution environment. In
The Network and Distributed System Security (NDSS)
Symposium, 2022.

[51] Yu Xia, Xiangyao Yu, Matthew Butrovich, Andrew
Pavlo, and Srinivas Devadas. Litmus: Towards a prac-
tical database management system with verifiable acid
properties and transaction correctness. In Proceedings
of the 2022 International Conference on Management
of Data, Philadelphia, PA, USA, pages 12–17, 2022.

[52] Liang Xiao, Dongjin Xu, Caixia Xie, Narayan B Man-
dayam, and H Vincent Poor. Cloud storage defense
against advanced persistent threats: A prospect theoretic
study. IEEE Journal on Selected Areas in Communica-
tions, 35(3):534–544, 2017.

[53] Kaiping Xue, Weikeng Chen, Wei Li, Jianan Hong, and
Peilin Hong. Combining data owner-side and cloud-
side access control for encrypted cloud storage. IEEE
Transactions on Information Forensics and Security,
13(8):2062–2074, 2018.

[54] Xun Yi, Russell Paulet, Elisa Bertino, Xun Yi, Russell
Paulet, and Elisa Bertino. Homomorphic encryption.
Springer, 2014.

[55] Wenting Zheng, Frank Li, Raluca Ada Popa, Ion Stoica,
and Rachit Agarwal. Minicrypt: Reconciling encryption
and compression for big data stores. In Proceedings of
the Twelfth European Conference on Computer Systems,
pages 191–204, 2017.

[56] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, et al. {XRP}:{In-
Kernel} storage functions with {eBPF}. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 375–393, 2022.

[57] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo.
Real-time kd-tree construction on graphics hardware.
ACM Transactions on Graphics (TOG), 27(5):1–11,
2008.

[58] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang,
Ke Ma, and Feifei Li. Veridb: An sgx-based verifiable
database. In Proceedings of the 2021 International
Conference on Management of Data, pages 2182–2194,
2021.

15

	Introduction
	Background and Preliminaries
	Server-side Encrypted Search
	Encryption-Compression Co-designs
	Preliminaries

	Overview
	System Setup
	Threat Model and Guarantees
	ECStore's Workflow Overview

	Design
	ECTree Construction
	ECTree Operations
	ECTree Compression redTODO:(1 fig, 1 algo).
	ECTree-driven Query Authentication

	Evaluation redTODO:add comp ratio and para sens study.
	End-to-end Performance
	Scalability
	Extensibility Study
	Lessons Learned

	Conclusion

