
SLARM: SLA-aware, Reliable and Efficient Transaction Dissemination for
Permissioned Blockchains

Paper # 264

Abstract
The blockchain paradigm has attracted diverse smart con-
tract applications to be deployed on a blockchain consist-
ing of a P2P network. However, no service-level agreements
(SLA) has been achieved for enforcing the commit deadlines
of smart contract transactions, although these applications
are often interactive with clients via phones and desire strin-
gent commit deadline (e.g., tens of seconds). Existing P2P
reliable multicast protocols for enforcing stringent latency
on packet dissemination are too heavyweight and incur sig-
nificant traffic on existing blockchains’ P2P network. More-
over, the integrity of these protocols’ metadata is vulnerable
on faulty P2P nodes, and their specific protocol messages are
vulnerable to targeted attacks.

This paper presents SLARM, the first SLA-aware and re-
liable transaction dissemination system for a blockchain.
SLARM leverages the strong integrity and confidentiality fea-
tures of Intel SGX to develop a new message-oblivious P2P
reliable multicast protocol, which defends against both the
integrity and targeted attacks. Evaluation on the Ethereum
blockchain system with three state-of-the-art P2P reliable
multicast protocols and five diverse real-world SLA-oriented
applications shows that: (1) SLARM completely eliminates
targeted attacks on its SLA-enforcing messages; and (2) even
with the existence of transaction spikes and attacked nodes,
SLARM achieves much higher SLA satisfaction rate on trans-
actions than the evaluated relevant protocols with a reason-
able high throughput.

1 Introduction

The emergence of blockchains has attracted the devel-
opments of diverse Internet-wide applications (e.g., e-
voting [13, 32], online auctions [36, 58], and online trad-
ing [43, 56]) on permissioned blockchain systems (e.g.,
Ethereum [65], Hyperledger Fabric [12], Quorum [15]), be-
cause permissioned blockchains often have high energy effi-
ciency and throughputs. While blockchain deployments can

greatly improve the reliability of these applications, these ap-
plications still naturally desire two important requirements as
their past deployments in a traditional distributed database.
The first requirement is the service-level agreements (SLA)
on sequential execution: a client often invoke smart contract
transactions updating the contracts’ states [18] (e.g., trading
transactions), so these transactions must be committed onto
the blockchain with the same complete (gap-free) order as
the order generated by the client.

The second requirement is the SLA on commit latency:
many of these transactions are generated by each client on
web browsers or mobile phones interactively, so the commit
latency of these transactions had better not exceed a time
bound (e.g., tens of seconds). We call the transactions that
desire these two requirements “SLA transactions”.

Unfortunately, despite much efforts on developing these
applications on permissioned blockchains (e.g., Ethereum-
PoA [2, 65]), fulfilling the two important SLA require-
ments for these applications is still especially challenging.
For reliability and network bandwidth efficiency, existing
blockchain systems’ P2P networks, which handle the dis-
seminations of transactions submitted by clients, often adopt
a probability-based Gossip protocol [27,42]. If a transaction
updating crucial smart contract states is lost during a dissem-
ination, the client may have to redisseminate the transaction,
easily making this transaction and all the client’s following
transactions violate SLA. Specifically, existing blockchain
systems’ P2P Gossip and flooding protocols not only often
miss deadlines, but also often incur gaps in per-client trans-
action sequences, including gaps on the sequences received
by consensus nodes (confirmed in §7).

To prevent clients’ retrying and redisseminating the trans-
actions throughout the P2P network, reliable P2P multicast
mechanisms [16, 30, 35, 51] make their P2P nodes exchange
received transactions with their neighbors and redisseminate
only the lost transactions. Erlay [51], a latest work, has
integrated a P2P reliable multicast protocol [16] with Bit-
coin [49] to improve both the bandwidth efficiency of Bit-
coin’s P2P network and privacy of clients.

1

0 5 10 15 20 25 30 35 40
Time(s)

0.2

0.4

0.6

0.8

1.0

Ra
ito

Spike

SLARM
Gossip
Flooding
Corrected
Erlay
Deadline

(a) SLA guarantees

0 5 10 15 20
Time(s)

0

50

100

150

200

Th
ro

ug
hp

ut
 (t

xn
/s

)

SLARM
Gossip
Flooding
Corrected
Erlay
Deadline

(b) Throughputs

Figure 1: SLA guarantee for SLA transactions and throughputs for
all transactions on the online trading application (details of evalua-
tion settings are in §7). At 0s, all systems are at peak throughputs;
at 8s, a spike of 200 txn/s SLA transactions lasts for 5s.

However, integrating existing P2P reliable multicast pro-
tocols [16,30,35,51] with a blockchain system still falls short
in meeting the two important SLA requirements of sequen-
tial execution and commit latency for Internet-wide applica-
tions. The reason is that existing reliable multicast protocols
are mainly designed for MPI [29], so they have to achieve
both the gap-filling (SLA on sequential execution) and re-
freshing (all or certain nodes receive all latest transactions)
tasks with high probability. The refreshing task is especially
inefficient: each node starts from itself, uni-directionally and
recursively inquiries their peers to infer the latest transac-
tions in the network, a kind of flooding multicast [49].

Leveraging the dissemination nature of committed blocks
in a blockchain, we come up with a simple, efficient P2P
reliable multicast protocol: during the Gossip [42] dissemi-
nation of client transactions (the forward directional dissem-
ination), our protocol conducts only lightweight gap-filling
of transactions and guarantees that the consensus nodes of a
blockchain can receive each client’s SLA transactions with-
out gaps. Then, consensus nodes can now efficiently commit
the per-client gap-free transactions in a block and efficiently
disseminate this committed block throughout the P2P net-
work (the backward directional dissemination). This back-
ward dissemination can also help the P2P nodes between a
client and a consensus node to safely skip many gap-filling
tasks. Overall, compared to existing reliable multicast pro-
tocols [16, 30, 35, 51], the commit latency of our simple bi-
directional protocol can be greatly reduced.

This idea results in our SLARM system. However, making
this new bi-directional protocol practical in the blockchain
domain for SLA transactions faces two major technical chal-
lenges. First, we must create a decentralized SLA priori-
tization mechanism to make P2P nodes disseminate SLA-
stringent transactions with high priority. Since the clocks of
blockchain nodes are loosely synchronized in Internet, pre-
cisely inferring the elapsed time of a transaction’s dissem-
ination time across nodes and prioritizing the transaction’s
dissemination order is not an easy task. Existing P2P reli-
able multicast protocols [16, 30, 35, 51] simply disseminate
all packets equally regardless of their elapsed dissemination

time. If these protocols are used to disseminate SLA trans-
actions, SLA-stringent transactions can be deferred by other
transactions.

SLARM’s core is an SLA-aware and Reliable Multicast
(SLARM) protocol. To tackle this challenge, SLARM’s pro-
tocol includes a new decentralized SLA prioritization mech-
anism, which lets each P2P node update the remaining SLA
deadline of each SLA transaction conservatively according
to the transaction’s elapsed time during the transaction’s
cross-peer dissemination. Our theoretical proof (§4.3) and
evaluation (§7) show that SLARM’s mechanism is robust on
tough network scenarios (e.g., transaction spikes).

The second challenge is security in blockchains: SLARM’s
SLA mechanism is run by each node, and some nodes
can be faulty and corrupt the mechanism. Moreover, spe-
cific protocol messages (e.g., gap-filling) in SLARM’s mul-
ticast protocol and existing P2P reliable multicast proto-
col [16, 30, 35, 51] are vulnerable to targeted attacks.

Fortunately, the increasingly prevalent trusted execution
hardware (e.g., Intel SGX [46]) has strong confidentiality
and integrity protections to make SLARM enable two impor-
tant security features. The first feature is integrity: SLARM’s
decentralized transaction SLA dissemination mechanism is
only involved in each P2P node’s SGX. Second, to handle
targeted attacks on specific messages (e.g., gap-filling), we
present a new design with both high obliviousity and effi-
ciency for all SLARM P2P messages (§5).

We implemented SLARM based on Ethereum [65] and
evaluated it on both our cluster and AWS [8]. We com-
pared SLARM with three state-of-the-art P2P reliable multi-
cast protocols [30,35,51], and with two traditional P2P mul-
ticast protocols (Gossip [27, 42] and flooding [9]). Specifi-
cally, Erlay [51], based on bimodal multicast [16], is a latest
reliable multicast protocol for blockchains. We evaluated all
these protocols and SLARM with diverse real-world applica-
tions. Our evaluation and analysis show that:

1. SLARM completely eliminates targeted attacks on its
SLA-enforcing messages (§5);

2. Figure 1a shows that, even with the existence of trans-
action spikes, SLARM achieves much higher SLA sat-
isfaction rate for SLA transactions than all the evalu-
ated relevant protocols;

3. Figure 1b shows that, compared to Gossip, SLARM’s
protocol achieves a reasonable overhead of 6.9% on
the throughput of all SLA and non-SLA transactions.

The major novelty of this paper is SLARM, the first P2P
reliable multicast protocol that meets the two important SLA
requirements in the blockchain domain. SLARM is secure,
efficient, and can support both general blockchain consen-
sus protocols and applications. SLARM can enable people
to develop even more interesting blockchain systems and
applications with heterogeneous SLA requirements (§7.5).
SLARM source code and evaluation results are released on
github.com/osdi20p264.

2

github.com/osdi20p264

The rest of the paper is as follows: §2 introduces the back-
ground. §3 gives an overview of SLARM. §4 introduces
SLARM ’s SLA protocol. §5 gives a security analysis, §6
presents implementation details, §7 shows our evaluation. §8
introduces related work, and §9 concludes the paper.

2 Background

2.1 Permissioned Blockchain
A blockchain runs a distributed consensus protocol among
a group of nodes as consensus nodes to agree on which
block can be committed in a total order onto the blockchain,
where a block contains a large number of transactions sub-
mitted by many clients. A transaction is defined as com-
mitted if a block containing this transaction is committed.
This paper mainly involves the Ethereum blockchain sys-
tem [65]; its P2P network implementation is the most mature
among open-source blockchain systems. Ethereum can be
either deployed in a permissionless or a permissioned way.
This paper focuses on a permissioned blockchain, which re-
quires all nodes joining its network to go through an explicit
membership registration process [12, 65], due to two main
reasons. First, a permissioned blockchain often has much
higher throughput (Ethereum-PoA [2] commits about 200
txns/s) and lower latency than a permissionless blockchain
(e.g., Bitcoin [49] commits about 7 txn/s), so a permissioned
blockchain faces a more stressful P2P network. Second,
a permissionless blockchain has a cryptocurrency incentive
scheme to motivate P2P nodes to disseminate a more valu-
able transaction (a kind of SLA scheme), where a permis-
sioned blockchain lacks such a scheme.

It is essential for clients in a permissioned blockchain to
submit transactions via P2P disseminations throughout the
network in order to reach consensus nodes. In a permis-
sioned blockchain’s P2P network, all P2P nodes are granted
members of the permissioned blockchain. Some P2P nodes
can be elected as consensus nodes to agree on committing
which block onto the blockchain. In some consensus proto-
cols (e.g., PoS [6] and PoET [22]), any P2P node throughout
the network has the right to propose a new block. Some con-
sensus protocols (e.g., PoA [2]) periodically re-elect consen-
sus nodes among all nodes in the P2P network, while some
other protocols (e.g., Algorand [31]) make their consensus
nodes be hidden from other nodes and clients. Therefore,
this P2P dissemination of client transactions throughout the
P2P network is essential.

The life cycle of a client transaction mainly contains two
parts: (1) the dissemination of the transaction from the client
to the entire network, and (2) the dissemination of a com-
mitted block containing this transaction. The second part
often takes a minor portion of the time cost of the entire life
cycle, because many transactions are packed in one commit-
ted block (i.e., in batches, for many clients, and gap-free) to

disseminate, and each client typically connects to multiple
nearby P2P nodes to fetch the committed block. As long as
one of the connected nodes receives the block, the client in-
fers the transaction as committed. The second part also often
happens less frequently (due to a block’s batched nature) and
consumes much less network bandwidth than the first part.
The first part is the major time bottleneck and improvement
spot of the life cycle (§7), because many clients disseminate
their transactions throughout the P2P network with the ex-
istence of ad-hoc network contention and transaction gaps,
and this part is the only part that can be improved in the per-
spective of an individual client’s perceived transaction com-
mit latency. Our evaluation shows that the second part was
often stable and took about 5.7s (only 33.5% of the entire
life cycle in Ethereum with Gossip) in the PoA (Proof-of-
Authority [2]) consensus protocol.

2.2 Intel SGX

Intel Software Guard eXtension (SGX) [46] is a prevalent
trusted execution hardware product. SGX provides a secure
execution environment called enclave. Data and code in an
enclave cannot be tampered with or revealed from outside.
A process running outside the enclave can invoke an SGX
ECall to switch its execution into the enclave and to exe-
cute a statically-shielded function in the enclave; a process
running in an enclave can invoke an OCall to switch its exe-
cution outside the enclave.

3 Overview

3.1 Failure and Threat Model

Same as typical permissioned blockchains’ P2P networks,
we consider SLARM’s network an asynchronous, Internet-
wide network. For nodes that have joined SLARM’s permis-
sioned blockchain (network), any components of these nodes
running outside of SGX can be faulty. Any SLARM node
with a faulty component is called a faulty node in this pa-
per. Specifically, faulty nodes can randomly drop and de-
lay clients’ transactions as well as SLARM protocol mes-
sages. Faulty nodes can also try to alter the SLA metadata in
SLARM’s SLA-aware multicast protocol, and can selectively
detect SLARM’s gap-filling messages from all received mes-
sages and delay or drop them. All nodes have only loosely
synchronized clocks, and faulty nodes can manipulate their
local clocks. Due to the asynchronous nature of Internet,
node failures and dropping transactions or messages cannot
be distinguished by other nodes, so SLARM treats a failed
node as faulty. All clients are trusted. A client’s transac-
tions are signed by the client itself and sent to connected
peers (§2.1), so faulty nodes cannot modify the transactions
or their SLA requirements.

3

C4
N9
N8

C2
Enclave

Consensus Layer

P2P Layer
N7

C3

Communication Blockchain	Core

C1 C3

4

1.Submit	SLA	TXs:tx1,tx2,...,tx5Application Layer

Scheduler

2.Disseminate

tx1 Nil tx3 Nil Nil

N8

...

Enclave

5.Propose	new
block

tx1 tx2 tx3 tx4 tx5 ...

Scheduler

Blocki(C2)

tx1 tx3tx2

Blocki+1(C3)

tx4 tx5 ...

...

...

Communication Blockchain	Core

N2

TXs

N1

N9

C4

C1 N5 C2N6

Reliable	Multicast

Reliable	Multicast

N6

C2

3.gapFill(nonce=2) 4.	gapReply(tx2)

Trusted module

Untrusted module

TXstx

TXs not receivedNil

N Normal node

C Consensus Node

Figure 2: SLARM’s architecture. All SLARM components are in green.

To prevent faulty nodes propagating an incorrect SLA
deadline metadata to its peers (e.g., assigning a stringent
deadline to an SLA transaction with a loose deadline),
SLARM’s runtime system updates only the metadata within
each node’s SGX enclave launched by SLARM. Outside
the SLARM’s enclaves, all client transactions (including both
SLA and non-SLA transactions) are encrypted to make all
transactions oblivious. In each node’s enclave, all trans-
actions are decrypted (§4.1). In SLARM, all the firmware
and hardware components of SGX are trusted. Hiding traf-
fic endpoints (Karaoke [40] and Stadium [60]), SGX micro-
architecture side-channels [64], and SGX Iago attacks [21]
are out of the scope of this paper.

3.2 SLA in SLARM

SLA is an agreement [37, 52, 59] between a customer and
a service provider on the service quality (e.g., performance
and reliability). Our SLARM system is the service provider,
and an application and its clients are the customers. A
smart contract [5, 19, 26, 65] is a stateful blockchain pro-
gram that can be invoked via client transactions submitted to
the blockchain. Smart contract applications often desire two
SLA requirements. First, a client’s transactions that invoke
smart contracts must be sequentially executed (gap-free) ac-
cording to the order submitted by the client. The second re-
quirement is SLA on commit latency (§1).

In SLARM, the SLA of a transaction is a 2-tuple
SLA:{Deadline,Order}, where Deadline is the desired com-
mit latency of the transaction, and Order is whether the trans-
action need be executed in order. Suppose an uncongested
network, and suppose the median commit latency of a trans-
action is T (e.g., 16.8s in the Ethereum-PoA system with
Gossip in Table 3). Given an application (e.g., online trading
in Table 2), SLARM by default considers all smart contract
transactions as SLA transactions, and by default sets the two

tuples as (c× T,Yes) for all the SLA transactions, where c
is a configurable constant among clients. Because all clients
and P2P nodes have loosely synchronized clock in SLARM,
and faulty nodes can manipulate their local clock, SLARM
uses latency duration instead of absolute clock time.

In SLARM, the SLA satisfaction rate p is the portion of
SLA transactions meeting their SLA deadlines. Suppose
in every second there are n SLA transactions with dead-
line c× T being submitted to the blockchain network. If
n does not exceed the maximum throughput of the consen-
sus protocol deployed in SLARM and the network capacity
of SLARM’s P2P network, then, SLARM guarantees that all
SLA transactions can meet their SLAs with high probabil-
ity p (96.0% when c = 2, proved in §4.3). Note that, given
the same network conditions, all typical blockchains’ Gos-
sip [27,42], flooding [7], and existing reliable multicast pro-
tocols [16, 30, 35, 51] enforce much lower SLA satisfaction
rate than SLARM (Figure 1a) when they are integrated into
blockchains (e.g., Erlay [51]).

3.3 SLARM Architecture

Figure 2 shows SLARM’s architecture, SLARM’s compo-
nents are in green. Each SLARM node, including both normal
nodes and consensus nodes (§2.1), has two trusted modules
and two untrusted modules. The scheduler and reliable mul-
ticast module running in an SGX enclave (orange color) are
trusted. The scheduler module prioritizes client transactions
sent from the node’s peers according to the transactions’
SLAs. The multicast module conducts a gap-filling task
when it finds a gap from its received per-client SLA trans-
action sequence; for non-SLA transactions, gap-filling is un-
necessary. These two trusted modules are 1.7k LOC (§6),
and the enclave memory stores only uncommitted transac-
tions. If this node is a consensus node, transactions are for-
warded to the blockchain core module.

4

On each SLARM node, the blockchain core module (in-
cluding the consensus protocol) and network communica-
tion module (including TCP/UDP) are outside SLARM’s en-
clave and are not trusted. The blockchain core module per-
forms consensus on committing which block, maintains a lo-
cal copy of the blockchain, and executes committed transac-
tions extracted from committed blocks.

Figure 2 also shows the life cycle of an SLA transaction
in SLARM: (1) A client submits a series of SLA transactions
to a nearby blockchain node N2. (2) After N2’s scheduler
module receives these transactions, it prioritizes the propaga-
tion of them according to their SLAs (§4.1) and disseminates
them. (3) If a node C2 detects a gap (tx2) in received trans-
actions, C2 sends a gapFill message to ask for tx2 from
a random subset of peers (§4.2). (4) If a peer in the sub-
set has the transaction, the peer replies C2 with a gapReply
message. In SLARM, non-SLA transactions do not involve
gap-filling. (5) The consensus nodes pack transactions into
blocks and agree on which block to commit next.

An open security challenge is that a P2P reliable multicast
protocol for blockchains must tackle targeted attacks on pro-
tocol messages: recent work [63] shows that attackers can
selectively defer certain types of P2P protocol messages dur-
ing a client transaction’s dissemination, which can trigger the
default peer adjustment mechanism in a P2P network and
maliciously make certain victim nodes adjust most of their
peers to faulty nodes. Such an Eclipse attack can further
arbitrarily delay the dissemination of transactions of these
victim nodes and violate the transactions’ SLA in SLARM.

Even if such Eclipse attacks do not exist, because the
protocol behavior and sizes of gapFill messages and nor-
mal disseminate messages are explicitly distinguishable in
existing P2P reliable multicast protocols (see Bimodal [16]
in Figure 4), attackers can easily stop the gap-filling tasks
by dropping or deferring their messages and stop the entire
commit progress of many clients’ SLA transactions. Ex-
isting reliable multicast protocols [16, 30, 35, 51], including
Erlay [51], a latest notable P2P reliable multicast protocol
tailored for blockchain security, are especially vulnerable to
such attacks. §4 and §5 will present a complete of attacks
SLARM aims to tackle, including such targeted attacks.

4 The SLARM Basic Protocol

On a SLARM node N, when disseminating an SLA transac-
tion, SLARM’s SLA dissemination mechanism subtracts the
deadline of this transaction with two trustworthy (conserva-
tive) time variables: N.RT T , the recent worst-case Round
Trip Time cost node N’s peers sending a transaction to N;
txwait

N , the time cost an SLA transaction tx spent on node
N’s scheduler queue. A transaction with a negative remain-
ing deadline will still be disseminated in SLARM; the resul-
tant remaining deadline will be reported to the transaction’s
client. §5 will present how SLARM makes these two vari-

ables conservative: SLARM can avoid faulty nodes’ mali-
cious behaviors of making the subtracted elapsed time from a
transaction’s remaining SLA deadline smaller than the actual
elapsed time of the transaction’s dissemination path, includ-
ing selective deferring attacks and manipulating local clocks.
To ease discussion, this section assumes these two variables
are conservative first.

4.1 Prioritizing SLA Transactions

We first present SLARM’s SLA prioritization mechanism in
a high level. Figure 3 shows that, when a SLARM P2P
node N receives a transaction tx sent from a client, N sub-
mits the transaction to its local SLARM enclave by an ECall.
The scheduler module running in N’s SLARM enclave (§3.3)
verifies tx’s signature and retrieves tx’s SLA requirements
c× T,Yes (if any). The scheduler then generates an SLA
metadata m, which indicates the transaction’s initial remain-
ing SLA deadline (c× T), appends m to tx, and inserts tx
onto SLARM’s local priority queue according to the deadline
m (a smaller deadline means higher priority).

If this transaction tx is sent from N’s peer, the same ECall
is invoked to push the transaction to N’s SLARM enclave.
N’s peer must have encrypted tx, so N’s enclave decrypts
tx, subtracts N.RT T from the transaction’s remaining dead-
line m, and inserts tx to the local priority queue. SLARM’s
own gapFill messages are also inserted to the queue’s head.
Non-SLA transactions are appended to the queue’s tail. To
achieve high obliviousity against attacks outside the enclave,
in SLARM, the communication module does a batch fetch
of transactions/messages from the queue’s head using an
ECall, subtracts each SLA transaction’s m according to its
wait time on the queue, encrypts each transaction/message in
the batch, exits from the ECall with the batch, and sends the
batch.

Txn
ECall (submit)

decrypt	or	verify	txn
signature

drop Is	SLA	transaction?

YesNo

Blockchain
Communication Module

Txn	gaps	exist?

generate	gapFill	msg
Yes

No Yes

Scheduler Module Reliable Multicast
Module

tail

ECall
(batch fetch)

send

head

append	txn insert	txn

A Slarm Node

Figure 3: SLARM’s enclave code invocations (via ECall) and out-
bound messages (via ECall). Enclave is in orange.

In a detailed level, for each scheduler module of a SLARM
node, this module runs within an SGX enclave (Figure 3) to

5

prioritize SLA transactions over non-SLA transactions. This
module is essential because typical applications often have
a large portion of non-SLA transactions (Table 2). With-
out this module, non-SLA transactions can easily block SLA
transactions and violate SLA (§7). Moreover, transactions
with the same SLA requirement can have different remain-
ing SLA deadlines in SLARM.

In the perspective of a client, the end-to-end commit la-
tency of a transaction contains two parts: the client trans-
action dissemination latency τd (from a client to consensus
nodes) and the consensus latency τc (including the time cost
of agreeing which block to commit and that of the committed
block reaching a connected peer of the client, see §2.1). Ac-
cording to our evaluation (§7.1), taud takes up about 52.3%
- 86.1% of the end-to-end commit latency and varies sig-
nificantly with the transaction workload. The consensus la-
tency (τc) is often stable (§2.1), and the block commit and
dissemination events are infrequent (e.g., happens once in
the network every 5s in PoA [2]). Therefore, τc does not in-
volve SLARM’s scheduler module, and SLARM just subtracts
τc from a transaction’s SLA deadline once when a transac-
tion is sent from its client to a connected P2P node. SLARM
focuses on making τd meet the remaining SLA deadline.

To meet SLA transactions’ deadlines, on each SLARM
node, SLARM’s scheduler module gives SLA-stringent trans-
actions a higher priority. If a transaction is an SLA transac-
tion, the scheduler module subtracts the remaining deadline
with the actual time spent in transferring tx from N’s peer
(suppose it is Nprev) to N. One native approach is to record
the local clock of Nprev using the code running in Nprev’s en-
clave launched by SLARM, and to subtract N’s local time
with this recorded time in N’s SLARM enclave. This ap-
proach is problematic because if N or Nprev is faulty, either
of the local times can be manipulated by the faulty node(s),
making the time subtracted from τd much less than the actual
time spent in the transmission (i.e., τd is no longer conserva-
tive).

We present a trustworthy mechanism to record N’s peers’
round-trip time cost conservatively as N.RT T , and details
are in §5.3. The scheduler module subtracts each received
SLA transaction’s τd with N.RT T and inserts the transaction
into local priority queue according to τd (or m). N’s next-
hop node (suppose it is Nnext) also uses its own Nnext .RT T to
update the transaction’s remaining τd conservatively.

4.2 Reliable Multicast

One key SLA requirement in SLARM is the sequential execu-
tion of per-client SLA transactions (i.e., gap-free), but the de-
fault P2P multicast protocols (typically Gossip and flooding)
in existing blockchain systems are not designed to achieve
the gap-filling task. Specifically, the flooding protocol [9]
forwards all newly received transactions on each node to all
the node’s neighbors, an extremely bandwidth consuming

process even for a low throughput blockchain [49]. Worse,
flooding has no guarantee of filling gaps for smart contract
transactions. In Gossip, when a node receives a transaction
for the first time, rather than sending the transaction to all
neighbors (flooding), it randomly selects a subset of neigh-
bors, and forwards the transaction to them [41]. However,
Gossip only provides a weak guarantee on gap-filling (e.g.,
in Figure 1a, Gossip failed to meet 91% of SLA transactions
within the same SLA deadline as SLARM’s).

In order to provide a high probability on the gap-filling
task in a P2P network, three reliable multicast protocols are
presented [16, 35, 51]. They typically follow a two-phase,
disseminate-then-correct pattern, as shown in Figure 4 . The
first phase is an unreliable, default Gossip that makes best-
effort attempts to efficiently disseminate transactions. The
second phase is an anti-entropy protocol, where each node
contacts its peers to exchange both the lost and latest trans-
actions. Erlay [51] is based on the bimodal reliable multi-
cast [16] and integrated with Bitcoin [49]. Compared with
Bitcoin’s flooding multicast, Erlay reduces network con-
sumption by 41%. In our evaluation, reliable multicast has a
better SLA rate than flooding and Gossip (Figure 1a).

However, all these existing reliable multicast protocols are
conceptually a uni-directional protocol: all nodes handle all
the tasks of dissemination, gap-filling, and refreshing the lat-
est transactions. Therefore, each node starts from itself, and
uni-directionally and recursively inquiries their peers to in-
fer the latest transactions throughout the network (a kind of
flooding [49]). After all, all existing reliable multicast pro-
tocols [16,30,35] except for Erlay are originally designed for
MPI.

Our idea is that we can leverage the refreshing nature
of a blockchain’s consensus protocol to design a new bi-
directional P2P reliable multicast protocol for SLARM, as
shown in Figure 4. This protocol is simple, efficient, yet
reliable on gap-filling. Specifically, on the forward direction
(Gossip [42]), SLARM lets the P2P reliable multicast proto-
col conducts only gap-filling of lost SLA transactions among
peers and to efficiently disseminate the complete sequences
of per-client transactions throughout the network.

N1

C2

N3

N4 tx1 tx2 tx3

tx1,tx2,tx3

		,tx2,tx3

tx1,tx2,tx3

		,tx2,		

tx1,tx2,tx3

tx1,tx2,tx3

tx1,tx2,tx3

tx1,tx2,tx3

tx1,tx2,tx3

Phase	1 Phase	2

N1

C2

N3

N4 tx1 tx2 tx3

tx1,tx2,tx3

		,tx2,tx3

tx1,tx2,tx3

		,tx2,		

tx1,tx2,tx3

tx1,tx2,tx3

tx1,tx2,tx3

tx1,tx2,tx3

tx1,tx2,tx3

Phase	1 Phase	2

(a) Bimodel Reliable Multicast

(b) SLARM's Reliable Multicast

gapFill

skip
gapFill

block
broadcast

X

Figure 4: Bimodal [16] & SLARM’s bi-directional multicast.

6

On the backward, the consensus nodes of SLARM’s
blockchain disseminate committed blocks throughout the
network; P2P nodes receiving the committed blocks safely
skip the disseminations of the committed transactions from
SLARM’s scheduler, multicast, and communication modules.
SLARM also safely skips the gap-filling task of lost trans-
actions with smaller sequence number than the committed
transactions.

4.3 SLA Enforcement Probability Analysis
Now we analyze SLARM’s probability in enforcing deadlines
of SLA transactions. Recall SLARM’s SLA variables (§3.2):
τd + τc and n. τd + τc is the median commit latency (life cy-
cle) of an SLA transaction in an uncongested P2P network.
n is the total number of SLA transactions generated from all
clients in every second. Suppose n is smaller than the con-
sensus protocol’s throughput, and we investigate the proba-
bility p: the percentage of these SLA transactions that can
meet their SLAs (c×T), where c is 2 by default.

SLARM’s reliable multicast protocol is based on Gos-
sip [42], where transactions are propagated to the entire net-
work in rounds. During the propagation rounds of a transac-
tion, each independent node randomly selects a subset of its
peers and forwards the transaction to the peers. This ran-
dom transmission process on each node is a Poisson pro-
cess [48, 54]. Based on the fact that the superposition of
independent Poisson processes is also a Poisson process [1],
an SLA transaction’s dissemination latency τd to the entire
network satisfies the Poisson distribution.

The end-to-end commit latency of a transaction is τd + τc.
Since we have an uncongested network, the consensus la-
tency τc is small (29.0%) and relatively stable (constant),
confirmed in our evaluation. Therefore, τd + τc also satisfies
Poisson distribution. Suppose the median commit latency of
a transaction is T (§3.3), according to Poisson Distribution’s
probability function p(x,T)= e−T T x

x! , if we set the SLA trans-
action’s deadline as 2×T , 96.0% of these transactions can
meet their SLA. This high theoretical rate matches SLARM’s
actual SLA satisfaction rate in our evaluation.

5 SLARM’s Security Design and Analysis

This section presents our security guarantee: SLARM can
maintain a high SLA satisfaction rate in §4.3 in the face of at-
tacks (e.g., selective targeted attacks mentioned in §3.3). As
SLARM’s SLA prioritization mechanism runs in each node’s
SGX, an attacker can conduct attacks only on messages ex-
changed between different nodes’ enclaves. Specifically,
an attacker can corrupt, reorder, drop, and delay messages.
Since SLARM’s protocol does not rely on message orders to
enforce SLA, we do not need to maintain message orders.
Since message drop and delay cannot be distinguished in In-
ternet, we call them deferring attacks and handle them to-

gether. The drop and delay attacks can be either selective or
random. §5.1 shows how SLARM defends against message
corruption attacks. §5.2 presents a message oblivious mech-
anism to handle selective deferring attacks. §5.3 presents
a trustworthy (conservative) RTT mechanism to handle ran-
dom deferring attacks.

5.1 Avoiding Message Corruption Attacks

The metadata in SLA transactions is sensitive. If faulty
nodes maliciously access and modify the metadata, they can
easily break SLARM’s SLA guarantee. For example, faulty
nodes can change the deadline of an SLA transaction from 5s
to 50s; then the SLA transaction will not be prioritized even
if it is stringent to disseminate, leading to SLA violation. To
prevent such attacks, SLARM uses SGX and protects SLA
transactions’ metadata updates on all SLARM nodes (§4.1).
Specifically, we put all the uncommitted transactions in en-
claves and pack the scheduler logic as ECalls to read in-
coming transactions, and decide the transactions to be dis-
seminated. In this manner, even if a faulty node runs our
scheduler module and tries to poison the metadata, she can-
not access the metadata and control the disseminated mes-
sages because of the shield of SGX.

5.2 Handling Selective Deferring Attacks

In SLARM, faulty nodes can selectively defer P2P messages
and easily violate the SLA of many clients’ SLA transac-
tions (e.g., the selective targeted attacks mentioned in §3.3).
If SLARM’s protocol messages in the network have differ-
ent sizes (e.g., if gapFill is not larger than 10 bytes while a
transaction dissemination message size can reach 100 bytes),
this exposes a large attack interface to attackers (§3.3). Thus,
we design to make all P2P messages in SLARM oblivious
by filling in extra dummy payload and encrypting messages
with the same symmetric key. In this way, all messages in
the SLARM network are oblivious (100 bytes), and a faulty
node cannot distinguish whether a message is a dissemina-
tion message (either an SLA transaction or non-SLA trans-
action), a conservative RTT ping-pong message (§5.3) or a
gapFill (§4.2).

5.3 Capturing Random Deferring Attacks

However, even if SLARM’s P2P messages are oblivious, it
is still challenging to meet SLA requirements of transactions
in an asynchronous network. Even if messages are oblivious,
faulty nodes might randomly and arbitrarily drop/delay P2P
messages. For instance, faulty nodes can defer the dissem-
ination of transactions on some faulty nodes close to con-
sensus nodes. If a naive SLA remaining deadline updating
mechanism uses the differences of local system clocks of

7

these faulty nodes to update the deadline of an SLA trans-
action (even if the updating code runs in SLARM’s enclave),
these faulty nodes can greatly defer the transaction’s one-hop
transmission and manipulate the nodes’ local clocks to fool
the transaction that it is far from being stringent (e.g., the
transaction’s one-hop elapse time measured by the clocks
between two faulty nodes is made negligible). Then, other
transactions will have higher priorities to reach consensus
nodes and make this fooled transaction be committed in sev-
eral later blocks. This is a huge SLA violation, but the fooled
transaction’s SLA remaining deadline does not capture this
attack (the deadline is no longer conservative).

To guarantee trustworthy (conservative) time value in
SLARM’s scheduler module and to reveal randomly deferred
attacks, SLARM achieves a trustworthy per-node RTT value
with a Trustworthy RTT maintaining protocol. Since the In-
ternet latency among two peers is asymmetric due to IP rout-
ing, SLARM uses a complete RTT value conservatively in-
stead of its half. This conservative choice is reasonable in
SLARM, as the deadline c×T often comes with c≤ 2 (§3.3).
Within regular time interval (10s, same as Ethereum’s ping
interval), the SLARM enclave on each node N (including a
faulty node) encapsulates a ping message with the same for-
mat as normal transaction dissemination (around 100 bytes)
and sends that ping message with its latest RTT value to all
its peers. At the time receiving a ping request, a peer node
encapsulates a reply message within SLARM’s local enclave
and sends the reply message back to the inquiry node. The
node N collects all the reply messages, all ping requests’
RTT values from all its peers, and selects the highest calcu-
lation result as the latest RTT value.

For each node, this mechanism is invoked frequently
enough to capture random packet deferring attacks and net-
work congestions, as each node has 50 peers in Ethereum,
and all its peers also invoke this trustworthy RTT mecha-
nism to exchange their worst-case RTT values at random
moments in every 10s ping-interval. This mechanism does
not increase Ethereum’s message complexity either; it is just
modified from Ethereum’s default ping-pong mechanism.

This protocol provides trustworthy (conservative) RTT
values against the random deferring attacks. Since all faulty
nodes need to forward transactions and update transactions’
SLA metadata to avoid being kicked out from the network,
faulty nodes have to keep sending messages, including the
RTT messages. Also, a faulty node cannot manipulate
an RTT reply message because all messages are decrypted
within SGX. Besides, our trustworthy RTT protocol can tol-
erate random deferring attacks and still make SLARM’s SLA
update mechanism conservative. This is because we select
the highest RTT value, so an inquiry node will get a statisti-
cal worst case of the actual network one-hop delay, including
the random delay conducted by faulty nodes.

Because faulty nodes cannot distinguish RTT messages
and transaction dissemination messages, so the probability

of their random deferring attacks deferring only node N’s
transaction dissemination messages without deferring any
RTT around N has an almost zero probability. Therefore,
SLARM’s trustworthy RTT mechanism can capture such ran-
dom attacks with a high probability and make SLA trans-
actions more stringent (some transactions’ SLA deadlines
can be made negative, but still stringent and conservative),
as the deadline for each SLA-transaction subtracts a statisti-
cally worst-case value of RTT.

SLARM nodes also need to conservatively estimate an
SLA transaction tx’s trusted local elapsed time on node N,
denoted as txwait

N , even if the local system clock is manipu-
lated. This is trivial to achieve with SGX, as txwait

N is accu-
mulated by a process in SLARM’s enclave via counting CPU
cycles, and the process never goes out of the enclave [24].

Overall, two critical variables used by the scheduler (§4),
N.RT T and local elapsed time txwait

N , are both conservative:
if SLARM nodes infer that an SLA transaction meets the SLA
deadline, the transaction actually meets it with high proba-
bility, even though the transaction’s dissemination has been
deferred by some faulty nodes on some hops. Of course,
if a client finds its committed SLA transactions with nega-
tive SLA remaining deadlines, these transactions may have
actually met their SLA deadlines, because SLARM subtracts
these two conservative variables from the deadlines.

6 Implementation

We implemented SLARM based on the latest Golang ver-
sion of Ethereum [65] - a fully tested and actively main-
tained blockchain system on the Internet. We leveraged
Ethereum’s P2P library to build SLARM’s reliable multicast
component and rewrote Ethereum’s transaction logic for ad-
mitting, verifying, and scheduling SLA transactions. We
carefully selected sensitive functions and put these functions
into SGX enclaves. Since SGX only provides C/C++ SDKs,
we rewrote all sensitive functions in C and used cgo to invoke
ECalls. Totally, we modified 2037 lines of Golang code,
and implemented the scheduler and reliable multicast com-
ponent for 1705 lines of C code. For encryption/decryption,
we used AES-256, a symmetric key library provided by the
SGX SDK. SLARM uses Ethereum’s bootstrap nodes for do-
ing SGX attestation [46] for all member nodes’ SLARM en-
claves. The bootstrap nodes store a list of attested nodes and
provide it to each attested node for peer discovery.

7 Evaluation

We evaluated SLARM’s performance on both our own clus-
ter and the AWS cloud [61], with other evaluation param-
eters shown in Table 1. In our cluster, each machine is
equipped with 2.60GHZ Intel E3-1280 V6 CPU with SGX,
40Gbps NIC, 64GB memory, and 1TB SSD. On the AWS

8

Config Cluster AWS Cloud

Nodes per-machine/Total 20/500 100/5,000
Default consensus Protocol Clique-PoA Clique-PoA
Block commit interval 5s 5s
Avg RTT 20ms 200ms
SLA {16s, Yes} {32s, Yes}
pingInterval 10s 10s
Workload Online trading, 200 txn/s Online trading, 200 txn/s
Bandwidth Limitation 20Mbps 30Mbps

Table 1: Default evaluation settings (unless specified).

cloud, we launched 50 m5d.24xlarge instances with 96 vC-
PUs, 4x900(SSD) and up to 25 Gigabit network bandwidth.
We ran 100 SLARM nodes on each VM instance (5k nodes
in total), with each SLARM node running in a docker con-
tainer. To collect and analyze all SLARM member nodes’
performance data, we also launched one t2.xlarge instance
with 4 vCPUs and moderate network bandwidth. All AWS
instances are run in the same zone (Ohio). We ran SGX in
cluster with actual SGX hardware and in AWS with Intel’s
SGX simulator, because AWS does not provide SGX hard-
ware. Table 5 show that SLARM’s performance in simula-
tion mode is roughly the same as hardware mode because
SLARM’s performance is bound to network latency.

We compared SLARM’s performance with five P2P mes-
saging protocols for blockchain systems, including three reli-
able multicast protocols (Erlay [51], Corrected protocol [35],
and Deadline protocol [30]), the basic Gossip protocol [42]
and the flooding protocol [9]. Among these baseline proto-
cols, we evaluated the flooding protocol by running origin
Ethereum [65] (version eth/64). Gossip is a popular P2P
messaging protocol that broadcasts transactions to random
peers in rounds (§4.2). Among these reliable multicast proto-
cols, Erlay is the only reliable multicast protocol that devel-
oped on a blockchain system (i.e., Bitcoin [49]). Since Erlay
is not open-source, we implemented Erlay on our own sys-
tem; Deadline protocol is implemented upon Gossip; Cor-
rected protocol is also a recent reliable multicast protocol.

We ran five applications with different portions of SLA
transactions (Table 2). We also generated traffic spikes in the
network. Our default benchmark workload is Online trading
because it has interactive transactions and is prevalent on the
Internet. We set the transaction size as 100 bytes. The trans-
action size for baseline systems are either equal to or smaller
than that of SLARM.

For SLARM, we define SLA satisfaction rate as the per-
centage of SLA transactions with positive remaining dead-
lines (§4.1) when their committed blocks reach their sub-
mitted clients. For other systems, we define their SLA sat-
isfaction rates by checking the clients’ elapsed clocks. We
report throughput as txn/s for both SLA and non-SLA trans-
actions. We define commit latency as the client perceived
elapsed time for all committed transactions.

Our evaluation focuses on the following questions:
§7.1 How does SLARM meet SLA for SLA transactions

0 5 10 15 20 25 30 35 40
Block Number

0.0

0.2

0.4

0.6

0.8

1.0

Ra
ito

SLA Transaction
Non-SLA Transaction

Figure 5: Distribution of SLARM’s SLA and non-SLA transactions
in 40 committed blocks, starting at 8s in Figure 1a. Since the block
commit latency is 5s, non-SLA transactions have deferred commit
latencies in SLARM.

and what is the performance for all transactions?
§7.2 How resilient is SLARM’s SLA and throughput on

spikes of SLA transactions?
§7.3 How resilient is the SLA and throughput to node fail-

ures in SLARM?
§7.4 How is the SLA and throughput for five applications

in SLARM?
§7.5 What are the limitations and potential future works of

SLARM?

7.1 SLA and Performance

Figure 1a shows all systems’ SLA satisfaction rate for SLA
transactions(for SLARM, 70% of all transaction; for other
systems, 100%, because they cannot distinguish SLA trans-
actions). Figure 1b shows the throughput of all systems
for all transactions. From 0 to 8s, the network launched
200 clients to generate 200 txn/s totally (in order to make
the PoA consensus protocol reach its peak throughput), and
70% of them were SLA transactions. On 8s, we gener-
ated 200 additional SLA transactions for five seconds as
a spike. Overall, SLARM’s SLA satisfaction rate for SLA
transactions dropped from 98.0% to 82.1% at about 15s and
then quickly recovered. The other systems’ SLA satisfaction
rate all dropped significantly and recover much slower than
SLARM. Gossip achieved the lowest SLA satisfaction rate
because it selects only a subset of peers to disseminate trans-
actions without any gap-filling. This indicates that SLARM
achieves the highest SLA satisfaction rate on the spike (all
systems incur the same number of additional SLA trans-
actions). Figure 1b shows that Gossip’s throughput is the
best, and SLARM incurred roughly 6.9% overhead on all
transactions’ throughput compared to Gossip. This is be-
cause SLARM’s reliable multicast incurs a lightweight bi-
directional gap-filling in addition to Gossip (Figure 4). Other
reliable multicast protocols and flooding incur much higher
throughput overhead compared to Gossip.

To investigate the reasons of SLARM’s high SLA satisfac-
tion rate and its throughput overhead, we collected all sys-

9

Applications SLA Txs Non-SLA Txs Traffic Spike
Mobile carriers [14, 20] Pre-paid users (10%) Post-paid users (90%) ×
Disease control [3, 4, 68] High-risk events (50%) Low-risk events (50%) ×
Online trading [43, 56] Real time trading (70%) Non-real time trading (30%) X
Voting [13, 32, 34] Election management (10%) Cast votes (90%) ×
CDN accounting [10, 33, 62] Settlements (10%) Usage data (90%) X

Table 2: SLARM’s evaluated blockchain applications. Parameters are from the cited blockchain papers on this table. All SLA transactions are
written in smart contracts.

System
Consensus
Latency(s)
(τc)

Avg P2P
Latency(s)
(τd)

Gap-filling SLA Txn
Miss Rate

num
cost
(s)

SLARM 6.1 6.0 5 1.1 3.1%
Flooding 6.2 8.8 N/A N/A 0.05%
Gossip 5.9 11.1 N/A N/A 15%
Corrected 6.1 7.1 13 2.6 3.3%
Erlay 6.3 7.3 21 4.2 3.6%
Deadline 6.2 7.8 23 4.6 4.1%

Table 3: SLARM micro-events before the spike launched at the 8s
in Figure 1a on AWS. Miss Rate means the ratio of missed SLA
transactions in gaps on consensus nodes.

tems’ mirco-events at the 7s in Table 3 and the same events
at the 16s (lowest SLA rate for SLARM) in Table 4. On Ta-
ble 3, SLARM’s mean commit latency (τd + τc) is much less
than 2×T = 34s, where T is 17 according to Gossip in Ta-
ble 3. This table explains SLARM’s high satisfaction rate of
98.X% before the spike comes at 8s. After 8s, SLARM in-
curs higher burden on disseminating SLA transactions, so its
per transaction τd increases from 6s in Table 3 to 26.8s in Ta-
ble 4, leading to a decreased SLA satisfaction rate. However,
SLARM’s SLA satisfaction rate was still much better than
the other three reliable multicast protocols, because their τd
increased by at least one order of magnitude, much larger
than the SLA deadline 2× T = 34s. The reason SLARM’s
τd is much lower than all the other systems in Table 4 is two
folds: (1) for reliable multicast protocols, SLARM incurred
a much fewer number of gap-filling invocations and spent
much fewer time in gap-filling; (2) for traditional flooding
and Gossip, they either incurred high transaction miss rate
on consensus nodes (64.1% for Gossip) or incurred severe
P2P network congestion (flooding’s τd is 123.7s).

To understand the throughput of SLARM’s SLA prioriti-
zation mechanism (§4) for SLA and non-SLA transactions,
we broke down SLARM’s portion of SLA transactions and
non-SLA transactions in each committed block in Figure 5,
which shows that SLARM’s mechanism gave high priority for
SLA transactions in the first half of the committed blocks,
and the non-SLA transactions took the majority in the sec-
ond half. This implies that SLARM always schedules SLA
transactions first (§4.2) and avoids non-SLA transactions to
block SLA transactions’ dissemination.

Regarding all systems’ client perceived latency on com-

System
Consensus
Latency(s)
(τc)

Avg P2P
Latency(s)
(τd)

Gap-filling SLA Txn
Miss Rate

num
cost
(s)

SLARM 7.5 26.8 33 6.6 21.4%
Flooding 7.2 123.7 N/A N/A 11.1%
Gossip 7.8 143.1 N/A N/A 64.1%
Corrected 8.6 75.3 157 31.4 31.9%
Erlay 7.8 88.3 198 39.8 35.9%
Deadline 8.0 93.1 203 41.6 36.2%

Table 4: SLARM micro-events at the 16s (lowest SLA satisfaction
rate) in Figure 1a on AWS. Miss Rate means the ratio of missed
SLA transactions in gaps on consensus nodes.

mitted SLA transactions, Table 4 can give a good indication.
By summing up the τd and τc columns, SLARM achieved the
lowest latency for SLA transactions among all systems since
the spike occurred in the 8s. Note that this spike is fair for all
systems, because the added 200 txn/s for 5s in Figure 1a were
all SLA transactions. For non-SLA transactions, SLARM
does sacrifice their commit latency, indicated in Figure 5.
Note that the first committed block in Figure 5 happened at
the 8s in Figure 1a, and Figure 5 shows that, in the first 20
committed blocks (each has a commit latency of 5s in PoA),
non-SLA transactions took less than 10%. Since the online
trading application has 30% non-SLA transactions, Figure 5
indicates that SLARM greatly sacrifices the commit latency
of non-SLA transactions, which matches SLARM’s design
goal on favoring SLA transactions. SLARM’s performance
tradeoff between SLA and non-SLA transactions also makes
SLARM’s throughput for all transactions slightly lower than
Gossip.

Since there is no cloud provider that can run the SGX
hardware on clouds, we ran SLARM’s enclave code us-
ing Intel’s SGX simulator on AWS. Table 5 shows the
micro-events of running SLARM’s enclave code on both the
SGX simulator and running the same code on the SGX
hardware of our cluster, which shows similar performance
cost. SLARM’s time spent in SGX is not the bottleneck of
SLARM’s performance, and we consider SLARM’s perfor-
mance results reported on AWS would be close to running
physical SGX hardware on future clouds (if they can provide
SGX hardware).

In addition to PoA, we also evaluated SLARM on differ-
ent P2P network scales (5k and 10k nodes) with two other

10

SGX # ECalls Enc/Dec No spike Spike

Cluster 93 1.8ms 3.4s 20.8s
AWS 115 2.3ms 4.8s 21.3s

Table 5: SLARM’s SGX micro-events in a SLA transaction’s en-
tire life cycle. # ECalls means the total number of ECalls invoked
for this transaction on all SLARM nodes that disseminate this trans-
action on all route paths, Enc/Dec means the corresponding total
encryption and decryption time in SGX, No spike means the corre-
sponding total wait time of this transaction on all route paths before
the spike in Figure 1a. Spike means an SLA transaction’s corre-
sponding total wait time on all route paths during the spike.

PoA(5k) PoA(10k) PoS(5k) PoS(10k) PoET(5k) PoET(10k)

Consensus
0.0

0.2

0.4

0.6

0.8

1.0

Ra
ito

SLAM
Gossip
Flooding
Erlay
Deadline
Corrected

(a) SLA guarantees

PoA(5k) PoA(10k) PoS(5k) PoS(10k) PoET(5k) PoET(10k)

Consensus
0

50

100

150

200

250

300

Th
ro

ug
ht

pu
t(t

xn
/s

)

196 198

244 251

136
150

252
273

300
320

165
177

147
159

182 187

100 108

165
175

208 213

120
129

155
164

190 193

108 116

173
186

218 226

126 132

SLAM
Gossip
Flooding
Erlay
Deadline
Corrected

(b) Throughputs

Figure 6: SLA guarantees and normalized throughput of PoA [2],
PoS [38], and PoET [23] with 5k and 10k P2P nodes.

high-throughput consensus protocols on Ethereum, shown in
Figure 6. Systems’ SLA transaction rate in Figure 6a was the
same as Figure 1a before the 8s. Overall, SLARM achieves
reasonable SLA satisfaction rate and reasonable overhead on
throughput (Figure 6b) compare to Ethereum running with
default Gossip multicast. Since typical applications (Ta-
ble 2) are often deployed with 5000 P2P nodes [10], we con-
sider SLARM scalable to the network scale. Figure 1b also
suggests that SLARM’s throughput is mainly determined by
consensus’s throughput, due to SLARM’s light-weight gap-
filling mechanism (§4.3).

0 10 20 30 40 50 60 70
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
ito

Spike

5s spike
10s spike
20s spike
30s spike

(a) SLARM’s SLA guarantee

0 10 20 30 40 50 60 70
Time(s)

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (t

xn
/s

)

5s spike
10s spike
20s spike
30s spike

(b) SLARM’s throughput

Figure 7: SLARM’s SLA and throughput under different lasting
time lengths of transaction spikes.

0 10 20 30 40 50 60 70
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ra
ito

5% failure
10% failure

(a) SLARM’s SLA guarantee

0 10 20 30 40 50 60 70
Time(s)

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (t

xn
/s

)

5% failure
10% failure

(b) SLARM’s throughput

Figure 8: SLARM SLA and throughput with node failures.

7.2 Resilience on SLA Transaction Spikes

We also studied all systems’ resilience to different degrees
of SLA transaction spikes. We started with the same set-
ting as the setting of 0s of Figure 1a, and we varied the last-
ing time lengths of the 200 additional SLA txn/s from 5s to
30s. Figure 7 shows that, for the 30s spike curve, SLARM’s
N.RT T among all nodes at the 40s (lowest SLA rate) is 0.6s
to 1.3s. At this 40s, the N.RT T value on each SLARM node
was larger than all one hop SLA transactions’ dissemination
time cost observed on the node. This indicates that SLARM’s
trustworthy RTT mechanism (§5.3) is able to capture the ran-
dom packet delay attacks or network congestions with high
probability and makes SLARM’s SLA deadline update mech-
anism conservative (§4). Figure 7 shows that, on the 30s of
lasting SLA spikes, SLARM’ SLA satisfaction rate dropped
to as low as 67% and then recovered. This is much better
than Corrected Gossip even if the spike of SLA transactions
lasts for only 5s.

7.3 Robustness on Node Failures

Node failures in a P2P network can be triggered by hard-
ware failures or DoS attacks, and such failures are more se-
vere than traffic spikes. We measured SLARM’s SLA sat-
isfaction rate and throughput with node failures, as shown
in Figure 8. On 8s, we randomly selected 10% of nodes
in SLARM’s network and killed them. SLARM’s SLA sat-
isfaction rate dropped from 98.1% to about 89.2%, and its
throughput for all transactions dropped from about 201 txn/s
to 170 txn/s. In fact, given a more sparse P2P network topol-
ogy, SLARM’s SLA prioritization mechanism has to recon-
nect peers and recompute the conservative RTTs (§5.3) for
nodes, and new peers are often farther, leading to more strin-
gent SLA deadline during the dissemination.

7.4 SLA and Performance on Applications

The above evaluation focuses on evaluating the online trad-
ing application with different systems on different scenar-
ios. We deployed each of the five applications (Table 2) in
SLARM individually and measured their SLA and through-

11

2 4 6 8 10 12 14 16 18
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
ito

Mobile carrier
Disease control
Online trading
Voting
CDN accounting

Figure 9: SLA guarantees for five applications (Table 2).

put according to their own application settings (e.g., portions
of SLA transactions and spikes). Figure 9 shows the results
for these applications. Overall SLARM’s SLA mechanisms
(§4 and §5) are generic for diverse applications.

7.5 Discussion
SLARM has two limitations. First, SLARM’s transaction
scheduling mechanism is based on Intel SGX. It is essen-
tial to protect the SLA metadata in an untrusted environment
with faulty nodes and to conservatively schedule transactions
when traffic spikes and node failures occur. Nowadays, SGX
is prevalent in modern CPUs. More and more blockchain
consensus protocols are developed with SGX (§8).

Second, SLARM’s performance is designed to favor SLA
transactions over non-SLA transactions. Figure 5 indicates
that SLARM highly favors SLA transactions and defers non-
SLA transactions. After all, more and more Internet-wide
blockchain applications are developed with the stateful smart
contracts, and some transactions are submitted in an interac-
tive way in web browsers or mobile apps. These transac-
tions generally desire a more stringent SLA guarantee, while
the deadlines for non-SLA transactions do not matter, so
SLARM’s trade-off is worthwhile.

SLARM, the first SLA-aware transaction dissemination
system for permissioned blockchains, enables the research
community to develop even more exciting blockchain sys-
tems and applications with diverse SLA requirements. For
instance, SLARM can facilitate the development of new
heterogeneous blockchain applications consisting of fine-
grained SLA requirements (e.g., a blockchain application
consisting of online trading, auction, and clearing trans-
actions). In addition, because SLARM’s SLA scheduling
mechanism is conservative (§4.2), SLARM can make SLA
guided verifications feasible (e.g., trustworthy SLA incen-
tive and auditing mechanisms) and can match the demands
of blockchain-driven CDN networks [10] and auditing appli-
cations [57]. Last but not least, SLARM may also be used
in permissionless blockchains [49], because permissionless
blockchains prioritize transactions based on transaction fees
without any SLA guarantee. We leave these exciting innova-
tions for future works.

8 Related Work

SGX-powered Blockchains. SGX improves diverse as-
pects of blockchain systems. Intel’s PoET [53] and its vari-
ant [47] replaces the PoW puzzles with a trusted timer in
SGX. REM [69] uses SGX to replace the “useless” PoW
puzzles with “useful” computation (e.g., big data). Mi-
crosoft CCF [55] (originally named COCO) is a permis-
sioned blockchain platform using SGX to achieve transac-
tion privacy. Hawk [39] and zkLedger [50] focus on enhanc-
ing confidentiality of smart contracts [17]. Ekiden [25] and
ShadowEth [67] offload the execution of smart contracts to
a small group of SGX powered computing nodes to avoid
the redundant smart contract executions on all consensus
nodes. BlockStack [11] builds a decentralized DNS and stor-
age services on blockchains. TeeChain [45] is a payment
network and leverages SGX to prevent parties from misbe-
having. SLARM is complementary to these SGX blockchain
systems and can be integrated into them.

P2P reliable multicast. Reliable multicast protocols ex-
ist [16, 30, 35, 51]. They typically follow the disseminate-
correct scheme. Bimodal multicast [16] first disseminates
messages, then corrects lost messages with anti-entropy.
Corrected Gossip [35] follows the same pattern and achieves
much lower message complexity with stronger reliability
guarantees. Chryssis et al. first considers on-time mes-
sage delivery in Gossip [30]. Erlay [51] integrates the reli-
able multicast with Bitcoin [49] to improve both the band-
width efficiency of Bitcoin and the security of the sys-
tem. SLARM’s protocol differs from these protocols in that
SLARM emphasizes achieving a no-gap guarantee efficiently
by co-designing the P2P and consensus level (bi-directional)
rather than correcting all lost messages (uni-directional).

P2P and SLA. Several SLA provisioning protocols have
been proposed for P2P networks [28, 44, 66]. They all focus
on one-to-one message routing, while blockchain’s transac-
tion delivery requires one-to-all multicast. Chryssis et al.
show how to ensure on-time message delivery in Gossip mul-
ticast protocol. Unlike SLARM, these protocols do not con-
sider DoS or targeted deferring attacks toward protocol mes-
sages, crucial in blockchain deployments.

9 Conclusion

We have present SLARM, the first blockchain transaction
dissemination system that can meet diverse SLAs of dif-
ferent applications. SLARM’s integration with Ethereum
has the potential to attract broad Internet-wide applications
with SLA requirements to be developed upon. This will
not only greatly improve the reliability of these applica-
tions but also greatly improving the efficiency of both user-
perceived latency and network bandwidth. All SLARM
source code and evaluation results are released on github.
com/osdi20p264.

12

github.com/osdi20p264
github.com/osdi20p264

References

[1] Thinning and superposition the poisson process.
https://www.randomservices.org/random/
poisson/Splitting.html.

[2] Clique poa protocol & rinkeby poa testnet. https://
github.com/ethereum/EIPs/issues/225, 2017.

[3] CDC is Testing Blockchain to Monitor the Coun-
try’s Health in Real Time. https://tinyurl.com/
y748cm38, 2018.

[4] How IBM and the CDC are testing blockchain to track
health issues like the opioid crisis. https://tinyurl.
com/y8trjxyn, 2018.

[5] Introduction to smart contracts. https:
//solidity.readthedocs.io/en/v0.4.24/
introduction-to-smart-contracts.html, 2018.

[6] Ethereum’s proof of stake faq. https://github.com/
ethereum/wiki/wiki/Proof-of-Stake-FAQ, 2019.

[7] Flooding. https://en.wikipedia.org/wiki/
Flooding_(computer_networking), 2019.

[8] Amazon EC2. https://aws.amazon.com/ec2/,
2020.

[9] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman
Datta, Zoran Despotovic, Manfred Hauswirth, Mag-
dalena Punceva, and Roman Schmidt. P-grid: a self-
organizing structured p2p system. ACM SiGMOD
Record, 32(3):29–33, 2003.

[10] Elif Ak and Berk Canberk. Bcdn: A proof of concept
model for blockchain-aided cdn orchestration and rout-
ing. Computer Networks, 161:162–171, 2019.

[11] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J
Freedman. Blockstack: Design and implementation of
a global naming system with blockchains, 2016. Ac-
cessed: 2016-03-29.

[12] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. Hyperledger fab-
ric: a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–15, 2018.

[13] Ahmed Ben Ayed. A conceptual secure blockchain-
based electronic voting system. International Journal
of Network Security & Its Applications, 9(3):01–09,
2017.

[14] Jere Backman, Seppo Yrjölä, Kristiina Valtanen, and
Olli Mämmelä. Blockchain network slice broker in 5g:
Slice leasing in factory of the future use case. In 2017
Internet of Things Business Models, Users, and Net-
works, pages 1–8. IEEE, 2017.

[15] Arati Baliga, I Subhod, Pandurang Kamat, and
Siddhartha Chatterjee. Performance evaluation of
the quorum blockchain platform. arXiv preprint
arXiv:1809.03421, 2018.

[16] Kenneth P Birman, Mark Hayden, Oznur Ozkasap,
Zhen Xiao, Mihai Budiu, and Yaron Minsky. Bimodal
multicast. ACM Transactions on Computer Systems
(TOCS), 17(2):41–88, 1999.

[17] Vitalik Buterin. Ethereum: A next-generation
smart contract and decentralized application plat-
form. https://github.com/ethereum/wiki/wiki/
White-Paper, 2014. Accessed: 2016-08-22.

[18] Vitalik Buterin et al. A next-generation smart contract
and decentralized application platform. white paper,
3(37), 2014.

[19] Vitalik Buterin et al. A next-generation smart contract
and decentralized application platform. white paper,
3(37), 2014.

[20] Abdulla Chaer, Khaled Salah, Claudio Lima,
Pratha Pratim Ray, and Tarek Sheltami. Blockchain
for 5g: opportunities and challenges. In 2019 IEEE
Globecom Workshops (GC Wkshps), pages 1–6. IEEE,
2019.

[21] Stephen Checkoway and Hovav Shacham. Iago attacks:
why the system call api is a bad untrusted rpc inter-
face. ACM SIGARCH Computer Architecture News,
41(1):253–264, 2013.

[22] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu,
and Weidong Shi. On security analysis of proof-of-
elapsed-time (poet). In International Symposium on
Stabilization, Safety, and Security of Distributed Sys-
tems, pages 282–297. Springer, 2017.

[23] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu,
and Weidong Shi. On security analysis of proof-of-
elapsed-time (poet). In International Symposium on
Stabilization, Safety, and Security of Distributed Sys-
tems, pages 282–297. Springer, 2017.

[24] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter,
and Yinqian Zhang. Detecting privileged side-channel
attacks in shielded execution with déjá vu. In Proceed-
ings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 7–18, 2017.

13

https://www.randomservices.org/random/poisson/Splitting.html
https://www.randomservices.org/random/poisson/Splitting.html
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
https://tinyurl.com/y748cm38
https://tinyurl.com/y748cm38
https://tinyurl.com/y8trjxyn
https://tinyurl.com/y8trjxyn
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://en.wikipedia.org/wiki/Flooding_(computer_networking)
https://en.wikipedia.org/wiki/Flooding_(computer_networking)
https://aws.amazon.com/ec2/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[25] Raymond Cheng, Fan Zhang, Jernej Kos, Warren
He, Nicholas Hynes, Noah Johnson, Ari Juels, An-
drew Miller, and Dawn Song. Ekiden: A plat-
form for confidentiality-preserving, trustworthy, and
performant smart contract execution. arXiv preprint
arXiv:1804.05141, 2018.

[26] Christopher D Clack, Vikram A Bakshi, and Lee
Braine. Smart contract templates: foundations, de-
sign landscape and research directions. arXiv preprint
arXiv:1608.00771, 2016.

[27] Alan Demers, Dan Greene, Carl Hauser, Wes Irish,
John Larson, Scott Shenker, Howard Sturgis, Dan
Swinehart, and Doug Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of
the sixth annual ACM Symposium on Principles of dis-
tributed computing, pages 1–12, 1987.

[28] Emad Felemban, Chang-Gun Lee, and Eylem Ekici.
Mmspeed: multipath multi-speed protocol for qos
guarantee of reliability and. timeliness in wireless sen-
sor networks. IEEE transactions on mobile computing,
5(6):738–754, 2006.

[29] Message Passing Interface Forum. Mpi: A message-
passing interface standard version 2.2, September
2009.

[30] Chryssis Georgiou, Seth Gilbert, and Dariusz R Kowal-
ski. Meeting the deadline: on the complexity of fault-
tolerant continuous gossip. Distributed Computing,
24(5):223–244, 2011.

[31] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 51–68, 2017.

[32] Rifa Hanifatunnisa and Budi Rahardjo. Blockchain
based e-voting recording system design. In 2017 11th
International Conference on Telecommunication Sys-
tems Services and Applications (TSSA), pages 1–6.
IEEE, 2017.

[33] Nicolas Herbaut and Nicolas Negru. A model for col-
laborative blockchain-based video delivery relying on
advanced network services chains. IEEE Communica-
tions Magazine, 55(9):70–76, 2017.

[34] Friðrik Þ Hjálmarsson, Gunnlaugur K Hreiðars-
son, Mohammad Hamdaqa, and Gísli Hjálmtỳsson.
Blockchain-based e-voting system. In 2018 IEEE
11th International Conference on Cloud Computing
(CLOUD), pages 983–986. IEEE, 2018.

[35] Torsten Hoefler, Amnon Barak, Amnon Shiloh, and Zvi
Drezner. Corrected gossip algorithms for fast reliable
broadcast on unreliable systems. In 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), pages 357–366. IEEE, 2017.

[36] Yutao Jiao, Ping Wang, Dusit Niyato, and Zehui Xiong.
Social welfare maximization auction in edge comput-
ing resource allocation for mobile blockchain. In
2018 IEEE international conference on communica-
tions (ICC), pages 1–6. IEEE, 2018.

[37] Li-jie Jin, Vijay Machiraju, and Akhil Sahai. Analysis
on service level agreement of web services. HP June,
page 19, 2002.

[38] Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference, pages 357–388.
Springer, 2017.

[39] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai
Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-
preserving smart contracts. In Symposium on Security
& Privacy. IEEE, 2016.

[40] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to
passive traffic analysis. In 13th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 18), pages 711–725, 2018.

[41] Joao Leitao, José Pereira, and Luis Rodrigues. Hy-
parview: A membership protocol for reliable gossip-
based broadcast. In 37th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works (DSN’07), pages 419–429. IEEE, 2007.

[42] Joao Leitao, José Pereira, and LuÍs Rodrigues. Gossip-
based broadcast. In Handbook of Peer-to-Peer Net-
working, pages 831–860. Springer, 2010.

[43] Zhetao Li, Jiawen Kang, Rong Yu, Dongdong Ye,
Qingyong Deng, and Yan Zhang. Consortium
blockchain for secure energy trading in industrial in-
ternet of things. IEEE transactions on industrial infor-
matics, 14(8):3690–3700, 2017.

[44] Zhi Li and Prasant Mohapatra. Qron: Qos-aware rout-
ing in overlay networks. IEEE Journal on Selected Ar-
eas in Communications, 22(1):29–40, 2004.

[45] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gun Sirer, and Peter Pietzuch. Teechain: A se-
cure payment network with asynchronous blockchain
access. In Proceedings of the 27th ACM Symposium on

14

Operating Systems Principles, SOSP ’19, pages 63–79,
New York, NY, USA, 2019. ACM.

[46] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R Savagaonkar. Innovative instructions and
software model for isolated execution. HASP @ ISCA,
10, 2013.

[47] Mitar Milutinovic, Warren He, Howard Wu, and
Maxinder Kanwal. Proof of luck: An efficient
blockchain consensus protocol. In SysTEX ’16 Pro-
ceedings of the 1st Workshop on System Software for
Trusted Execution, pages 2:1–2:6. ACM, 2016.

[48] Yves Mocquard, Bruno Sericola, and Emmanuelle An-
ceaume. Probabilistic analysis of rumor-spreading
time. INFORMS Journal on Computing, 2019.

[49] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report, Manubot, 2019.

[50] Neha Narula, Willy Vasquez, and Madars Virza. zk-
ledger: Privacy-preserving auditing for distributed
ledgers. auditing, 17(34):42.

[51] Gleb Naumenko, Gregory Maxwell, Pieter Wuille,
Alexandra Fedorova, and Ivan Beschastnikh. Erlay: Ef-
ficient transaction relay for bitcoin. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 817–831, 2019.

[52] Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth.
Service level agreement in cloud computing. 2009.

[53] Giulio Prisco. Intel develops ‘sawtooth lake’distributed
ledger technology for the hyperledger project. Bitcoin
Magazine, 2016.

[54] S Sundhar Ram, A Nedić, and Venugopal V Veeravalli.
Asynchronous gossip algorithms for stochastic opti-
mization. In Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, pages 3581–3586.
IEEE, 2009.

[55] Mark Russinovich, Edward Ashton, Christine Avanes-
sians, Miguel Castro, Amaury Chamayou, Sylvan
Clebsch, Manuel Costa, CÃ c©dric Fournet, Matthew
Kerner, Sid Krishna, Julien Maffre, Thomas Mosci-
broda, Kartik Nayak, Olya Ohrimenko, Felix Schus-
ter, Roy Schwartz, Alex Shamis, Olga Vrousgou,
and Christoph M. Wintersteiger. Ccf: A framework
for building confidential verifiable replicated services.
Technical Report MSR-TR-2019-16, Microsoft, April
2019.

[56] Moein Sabounchi and Jin Wei. Towards resilient net-
worked microgrids: Blockchain-enabled peer-to-peer
electricity trading mechanism. In 2017 IEEE Confer-
ence on Energy Internet and Energy System Integration
(EI2), pages 1–5. IEEE, 2017.

[57] Bruce Schneier and John M Kelsey. Event auditing sys-
tem, November 2 1999. US Patent 5,978,475.

[58] Alberto Sonnino, Michał Król, Argyrios G Tasiopou-
los, and Ioannis Psaras. Asterisk: Auction-based
shared economy resolution system for blockchain.
arXiv preprint arXiv:1901.07824, 2019.

[59] Douglas B Terry, Vijayan Prabhakaran, Ramakrishna
Kotla, Mahesh Balakrishnan, Marcos K Aguilera, and
Hussam Abu-Libdeh. Consistency-based service level
agreements for cloud storage. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 309–324, 2013.

[60] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 423–440, 2017.

[61] Jinesh Varia. Migrating your existing applications to
the aws cloud. A Phase-driven Approach to Cloud Mi-
gration, 2010.

[62] Thang X Vu, Symeon Chatzinotas, and Björn Otter-
sten. Blockchain-based content delivery networks:
Content transparency meets user privacy. In 2019 IEEE
Wireless Communications and Networking Conference
(WCNC), pages 1–6. IEEE, 2019.

[63] Matthew Walck, Ke Wang, and Hyong S Kim. Ten-
drilstaller: Block delay attack in bitcoin. In 2019 IEEE
International Conference on Blockchain (Blockchain),
pages 1–9. IEEE, 2019.

[64] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
sgx. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 2421–2434, 2017.

[65] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1–32, 2014.

[66] Hao Yang, Minkyong Kim, Kyriakos Karenos, Fan
Ye, and Hui Lei. Message-oriented middleware with
qos awareness. In Service-Oriented Computing, pages
331–345. Springer, 2009.

15

[67] Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, and
Jan Xie. Shadoweth: Private smart contract on public
blockchain. Journal of Computer Science and Technol-
ogy, 33(3):542–556, 2018.

[68] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and
Wei Jiang. Healthcare data gateways: found healthcare
intelligence on blockchain with novel privacy risk con-
trol. Journal of medical systems, 40(10):218, 2016.

[69] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and
Robbert van Renesse. Rem: Resource-efficient mining
for blockchains. http://eprint.iacr.org/2017/
179, 2017. Accessed: 2017-03-24.

16

http://eprint.iacr.org/2017/179
http://eprint.iacr.org/2017/179

	Introduction
	Background
	Permissioned Blockchain
	Intel SGX

	Overview
	Failure and Threat Model
	SLA in Slarm
	Slarm Architecture

	The Slarm Basic Protocol
	Prioritizing SLA Transactions
	Reliable Multicast
	SLA Enforcement Probability Analysis

	Slarm's Security Design and Analysis
	Avoiding Message Corruption Attacks
	Handling Selective Deferring Attacks
	Capturing Random Deferring Attacks

	Implementation
	Evaluation
	SLA and Performance
	Resilience on SLA Transaction Spikes
	Robustness on Node Failures
	SLA and Performance on Applications
	Discussion

	Related Work
	Conclusion

